Past, Present and the Future of Precision sin²q_w Measurements

Jae Yu (for NuTeV Collaboration)University of Texas at Arlington

NuFact'03, June 9, 2003 Columbia University, New York

- Introduction
- Past measurements
- Current Improvement
- Measurement at a Neutrino Factory
- Conclusions

NuTeV Collaboration

T. Adams⁴, **A. Alton**⁴, **S. Avvakumov**⁷, L.de Babaro⁵, P. de Babaro⁷, R.H. Bernstein³, A. Bodek⁷, T. Bolton⁴, S. Boyd⁸, J. Brau⁶, D. Buchholz⁵, H. Budd⁷, L. Bugel³, J. Conrad², R.B. Drucker⁶, **B.T.Fleming**³, **J.A.Formaggio**², R. Frey⁶, **J. Goldman**⁴, **M. Goncharov**⁴, D.A. Harris³, R.A. Johnson¹, **J.H.Kim**², S.Kutsoliotas⁹, M.J. Lamm³, W. Marsh³, **D. Mason**⁶, J. McDornald⁸, K.S.McFarland⁷, **C. McNulty**², **Voica Radescu**⁸, W.K. Sakumoto⁷, H. Schellman⁵, M.H. Shaevitz², P. Spentzouris³, E.G.Stern², **M. Vakili**¹, **A. Vaitaitis**², **U.K. Yang**⁷, J. Yu^{3*}, **G.P. Zeller**², and E.D. Zimmerman^{2#}

- 1. University of Cincinnati, Cincinnati, OH45221, USA
- 2. Columbia University, New York, NY 10027
- 3. Fermi National Accelerator Laboratory, Batavia, IL 60510
- 4. Kansas State University, Manhattan, KS 66506
- 5. Northwestern University, Evanston, IL 60208
- 6. University of Oregon, Eugene, OR 97403
- 7. University of Rochester, Rochester, NY 14627
- 8. University of Pittsburgh, Pittsburgh, PA 15260
- 9. Bucknell University, Lewisburg, PA 17837
- *: Current affiliation at the University of Texas at Arlington
- #: Current affiliation at the University of Colorado, Boulder

sin²q_W and n-N scattering

- In the electroweak sector of the Standard Model, it is not known a priori what
 the mixture of electrically neutral electromagnetic and weak mediator is

 This fractional mixture is given by the mixing angle
- Within the on-shell renormalization scheme, $\sin^2 \theta_W$ is:

$$\sin^2 \boldsymbol{q}_{w}^{On-Shell} = 1 - \frac{M_W^2}{M_Z^2}$$

- Provides independent measurement of M_W & information to pin down M_{Higgs}
- Comparable size of uncertainty to direct measurements
- Measures light quark couplings → Sensitive to other types (anomalous) of couplings
- In other words, sensitive to physics beyond SM → New vector bosons, compositeness, v-oscillations, etc

How did we measure?

$$coupling \propto I_{weak}^{(3)}$$

$$coupling \propto I_{weak}^{(3)} - Q_{EM} \sin^2 \boldsymbol{q}_W$$

- Cross section ratios between NC and CC proportional to $\sin^2\theta_W$
- Llewellyn Smith Formula:

$$R^{n(\bar{n})} = \frac{S_{NC}^{n(\bar{n})}}{S_{CC}^{n(\bar{n})}} = ?^{2} \left(\frac{1}{2} - \sin^{2}?_{W} + \frac{5}{9} \sin^{4}?_{W} \left(1 + \frac{S_{CC}^{\bar{n}(n)}}{S_{CC}^{n(\bar{n})}} \right) \right)$$

Some corrections are needed to extract $\sin^2 \theta_W$ from measured ratios (radiative corrections, heavy quark effects, isovector target corrections, HT, R₁)

Previous Experiment

E770: Quad Triplet Beam and Lab E Detector

- Conventional neutrino beam from π/k decays
- Focus all signs of π/k for neutrinos and antineutrinos
- Both v_{μ} , v_{μ} in the beam (NC events are mixed)

- Very small cross section → Heavy neutrino target
- v_e are the killers (CC events look the same as NC events)

How Do We Separate Events?

Charged Current Events

Neutral Current Events

June 9, 2003

J. Yu: Past, Present and Future of Precision $\sin^2\theta_W$ Measurements, NuFact'03

Event Length

Define an Experimental Length variable

→ Distinguishes CC from NC experimentally in statistical manner

Compare experimentally measured ratio

$$R_{Exp} = \frac{N_{Short}}{N_{Long}} = \frac{L < L_{Cut}}{L > L_{Cut}} = \frac{N_{NC Candidates}}{N_{CC Candidates}}$$

to theoretical prediction of R^v

Past Experimental Results

$$\sin^2 ?_W^{\text{On-Shell}} = 1 - \frac{M_W}{M_Z} = 0.2277 \pm 0.0031$$

$$\Rightarrow$$
 M_W^{On-Shell} = 80.14 \pm 0.16GeV/c²

• Significant correlated error from CC production of charm quark (m_c) modeled by slow rescaling, in addition to ν_e error

June 9, 2003

J. Yu: Past, Present and Future of Precision $sin^2\theta_W$ Measurements, NuFact'03

The NuTeV Experiment

Suggestion by Paschos-Wolfenstein by separating v and v beams:

$$R^{-} = \frac{s_{NC}^{n} - s_{NC}^{\overline{n}}}{s_{NC}^{n} - s_{NC}^{\overline{n}}} = ?^{2} \left(\frac{1}{2} - \sin^{2}?_{W}\right) = \frac{R^{n} - R^{\overline{n}}}{1 - r}$$

$$\Rightarrow \text{Reduce charm CC production error by subtracting sea quark contributions}$$

- - → Only valence u, d, and s contribute while sea quark contributions cancel out
 - → Massive quark production through Cabbio suppressed d_v quarks only
- Smarter beamline
 - Separate ν and ν beam
 - Removes all neutral secondaries to eliminate v_e content

Events and E_{Had} After Event Selection

Events passing cuts: 1.62M ν & 350k $\overline{\nu}$ (<E ν >~100GeV)

NuTeV Event Length Distributions

Energy Dependent Length cut implemented to improve statistics and reduce systematic uncertainties.

Event Contamination and Backgrounds

- *SHORT n_{m} CC's (20% n, 10% `n) μ exit and rangeout
- •SHORT n_e CC's (5%) v_e N \rightarrow eX
- •Cosmic Rays (0.9%)

•Hard m Brem(0.2%)

Deep μ events

Other Systematic Effects

Sources of experimental uncertainties kept small, through modeling using $\mathbf n$ and TB data

Effect	Size(dsin²q _w)	Tools
Z _{vert}	0.001/inch	μ+μ- events
X _{vert} & Y _{vert}	0.001	MC
Counter Noise	0.00035	TB μ's
Counter Efficiency	0.0002	ν events
Counter active area	0.0025/inch	ν CC, TB
Hadron shower length	0.0015/cntr	TB π 's and k's
Energy scale	0.001/1%	ТВ
Muon Energy Deposit	0.004	νCC

June 9, 2003

J. Yu: Past, Present and Future of Precision sin²θ_w Measurements, NuFact'03

MC to Relate R_nexp to Rⁿ and sin²q_w

• Parton Distribution Model (<Q $^2>$ ~ 25 GeV 2 for $\nu_{\mu'}$ 16

sin^2q_{W} Fit to R_n^{exp} and R_n^{exp}

- Thanks to the separate beam → Measure R^v's separately
- Use MC to simultaneously fit R_n^{exp} and $R_{\bar{n}}^{exp}$ to $\sin^2\theta_W$ and $m_{c'}$ and $\sin^2\theta_W$ and ρ

$$R^{n(\bar{n})} = \frac{S_{NC}^{n(\bar{n})}}{S_{CC}^{n(\bar{n})}} = ?^{2} \left(\frac{1}{2} - \sin^{2}?_{W} + \frac{5}{9} \sin^{4}?_{W} \left(1 + \frac{S_{CC}^{\bar{n}(n)}}{S_{CC}^{n(\bar{n})}} \right) \right)$$

- R^v Sensitive to $\sin^2\theta_W$ while R $^{\overline{v}}$ isn't, so R^v is used to extract $\sin^2\theta_W$ and R $^{\overline{v}}$ to control systematics
- Single parameter fit, using SM values for EW parameters (ρ_0 =1)

$$\sin^2$$
?_W = 0.2277 ± 0.0013 (stat) ± 0.0009 (syst)

$$m_{C}^{}=1.32\pm0.09$$
 (stat) \pm 0.06 (syst) w/ $m_{C}^{}=1.38\pm0.14$ GeV/c $^{^{2}}$ as input

•Two parameter fit for $\sin^2\theta_W$ and ρ_0 yields

$$\sin^2 ?_W = 0.2265 \pm 0.0031$$

?₀ = 0.9979 \pm 0.041

J. Yu: Past, Present and Future of Precision $\sin^2\!\theta_W$ Measurements, NuFact'03

Syst. Error dominated since we cannot take advantage of sea quark cancellation

NuTeV sin²q_w Uncertainties

Source of Uncertainty	d sin²q _w
Statistical	0.00135
$ u_{\rm e}$ flux	0.00039
Event Vertex	0.00030
Length (Other effects)	0.00027 (23)
Total Experimental Systematics	0.00063
CC Charm production, sea quarks	0.00047
R_L	0.00032
$oldsymbol{s}^{ar{n}}/oldsymbol{s}^n$	0.00022
Higher Twist	0.00014
RadiativeCorrection	0.00011
Non-isoscalar target	0.00005
Total Physics Model Systmatics	0.00064
Total Uncertainty	0.00162
DM _W (GeV/c²)	0.08

Dominant uncertainty

1-Loop Electroweak Radiative Corrections based on Bardin, Dokuchaeva JINR-E2-86-2 60 (1986)

$$\begin{split} dsin^2?_W^{(On-shell)} &= -0.00022 \times \left(\frac{M_t^2 - (175 GeV)^2}{(50 GeV)^2} \right) \\ &+ 0.00032 \times In \! \left(\frac{M_H}{150 GeV} \right) \end{split}$$

Past vs Present Uncertainty Comparisons

The Present (NuTeV) sin²q_W

$$\sin^{2}?_{W}^{On-Shell} = 0.2277 \pm 0.0013 \text{ (stat)} \pm 0.0009 \text{ (syst)}$$

$$\sin^{2}?_{W}^{On-Shell} = 1 - \frac{M_{W}^{2}}{M_{Z}^{2}}$$

$$\Rightarrow M_{W}^{On-Shell} = 80.14 \pm 0.08 \text{ GeV/c}^{2}$$

Comparable precision but value smaller than other measurements

Model Independent Analysis

- Performed the fit to quark couplings (and g_I and g_R)
 - For isoscalar target, the νN couplings are

$$g_L^2 = u_L^2 + d_L^2 = ?_0^2 \left(\frac{1}{2} + \sin^2 ?_W + \frac{5}{9} \sin^4 ?_W \right)$$

$$g_R^2 = u_R^2 + d_R^2 = ?_0^2 \frac{5}{9} \sin^4 ?_W$$

- From two parameter fit to R_n^{exp} and $R_{\overline{n}}^{exp}$

$$q_1^2 = 0.3001 \pm 0.0014$$

 $g_1^2 = 0.3001 \pm 0.0014$ (SM: 0.3042 \(\bigsim -2.6\sigma\) deviation)

$$g_R^2 = 0.0308 \pm 0.0011$$
 (SM: 0.0301 Agreement)

Difficult to explain the disagreement with SM by: Parton Distribution Function or LO vs NLO or Electroweak Radiative Correction: large M_{Higgs}

> 1 Future of Precision ents, NuFact'03

What is the discrepancy due to (Old Physics)?

- R- technique is sensitive to q vs q differences and NLO effect
 - Difference in valence quark and anti-quark momentum fraction
- Isospin symmetry assumption might not be entirely correct
 - Expect vio<u>lation about 1% → NuTeV reduces this effect by using the ratio of v and v cross sections → Reducing dependence by a factor of 3
 </u>
- s vs s quark asymmetry
 - s and s needs to be the same but the momentum could differ if +30% asymmetry
 - NuTeV LO di- μ measurement shows $\Delta s=s s\sim-0.0027$
 - NuTeV NLO analysis show no-asymmetry (D. Mason, et al., ICHEP02 proceedings)
- NLO and PDF effects
 - PDF, m_c, Higher Twist effect, etc, are small changes
- Heavy vs light target PDF effect (Kovalenko et al., hep-ph/0207158)
 - Using PDF from light target on Iron target could make up the difference
 NuTeV result uses PDF extracted from CCFR (the same target)

What other explanations (New Physics)?

- Heavy non-SM vector boson exchange: Z', LQ, etc
 - LL coupling enhanced than LR needed for NuTeV
- Propagator and coupling corrections
 - Small compared to the effect

- Gauge boson interactions
 - Allow generic couplings → Extra Z' bosons???
 - LEP and SLAC results says < 10⁻³
- Many other attempts in progress but so far nothing seems to explain the NuTeV results
 - Lepto-quarks
 - Contact interactions with LL coupling (NuTeV wants m₇,~1.2TeV, CDF/D0: m₇,>700GeV)
 - Almost sequential Z' with opposite coupling to ν

Langacker et al, Rev. Mod. Phys. **64** 87; Cho et al., Nucl. Phys. **B531**, 65; Zppenfeld and Cheung, hep-ph/9810277; Davidson et al., hep-ph/0112302

NLO Upgrade of sin²q_W Analysis

- To address concerns within the community
 - Don't expect to see large effects
 - LO x-sec model describe CC x-sec data well
 - Gambino, et al., (hep-ph/0112302) shown little NLO PDF effect to Rσ level shifts to R- small (Davidson, hep-ph/0112302 & Kulagin, hep-ph/0301045)
- To calculate $O(\alpha_s)$ pQCD corrections to the differential X-sec for $\nu,\ \nu$ DIS
- NuTeV (Zeller & McFarland) is collaborating with Theorists
 - FNAL Theory group: K. Ellis, B. Dobrescu, W. Gigele
 - DESY: Seven-Olaf Moch
 - others
- Approach based on Altarellu, Ellis & Martinelli, NP B143, 521 (1978)
 - X-sec's written in terms of xF₁, F₂, xF₃
 - pQCD corrections affect $2xF_1-F_2=F_L \& xF_3-F_2$
 - F₁ effect taken into account via R₁
 - Need α_s correction of xF₃-F₂, because α_s^2 is small (Zijlstra, PLB297, 377, 1992)
- Calculations and Implementation of the correction in progress

sin²q_W Measurement at a NuFact

- Neutrinos come from μ decays
 - Good understanding of the beam content and flux
- Better collimated than conventional beam
- Large neutrino flux (10⁵~10⁶ higher than the current)

But...

- Always two neutrinos simultaneously in the given beam (ν_e+ν_u or ν_u+ν_e)
 - Traditional heavy target detector will not work
 - Will screw up NC counting due to ν_{e} CC events
 - Need light target detectors → Can afford to do this
- Might need new techniques for NC to CC ratio
 - Can't distinguish ν_{e} vs ν_{μ} induced NC events

A Light Target $\sin^2 \theta_W$ Detector at a NuFact

 ν_{e} and ν_{u} from muon decays are in the beam at all times

 \rightarrow Must use light target (D₂) detectors

Expectation at a NuFact

Using a 1m thick D_2 target, one can obtain about 20M ν_{μ} CC events per year \rightarrow With the help of good p-id, the stat doubles \rightarrow Length related uncertainties become irrelevant

Source of Uncertainty	$ m d sin^2 q_W$
Statistical	1.35x10 ⁻³ →2.13x10 ⁻⁴
$ u_{\text{e}}$ flux	$3.9x10^{-4} \rightarrow 0$
Event Vertex	$3.0x10^{-4} \rightarrow 3.0x10^{-6}$
Energy Measurements	$1.80 \times 10^{-4} \rightarrow 9.00 \times 10^{-5}$
Total Experimental Systematics	$6.30 \times 10^{-4} \rightarrow 9.00 \times 10^{-5}$
CC Charm production, sea quarks	$4.70 \times 10^{-4} \rightarrow 2.40 \times 10^{-4}$
Higher Twist	$1.40 \times 10^{-4} \rightarrow 1.40 \times 10^{-4}$
Non-isoscalar target correction $\mathbf{s}^{-n} / \mathbf{s}^{-n}$ Radiative Correction	$5.00x10^{-5} \rightarrow 0 (D_2 \text{ target})$
	$2.20x10^{-4} \rightarrow 1.50x10^{-4}$
	$1.10x10^{-4} \rightarrow 1.10x10^{-4}$
R_L	$3.20x10^{-4} \rightarrow 9.00x10^{-5}$
Total Physics Model Systmatics	$6.40 \times 10^{-4} \rightarrow 4.6 \times 10^{-4}$
Total Uncertainty	1.62x10 ⁻³ →5.15x10 ⁻⁴
DM _W (GeV/c²)	0.08→0.025

Experimental and Theoretical Issues

Experimental Issues

- Must be able to reverse beam polarity and measure current well
- Detector must be light weight
- Must be able to distinguish primary e, μ , and π
 - Need to control overall p-ID efficiency to be better than 10⁻³
- High electron detection efficiency
- Good EM and Hadronic shower ID
- Good charged particle momentum measurement
- Good vertex measurement w/ triggering capability at the target

Theoretical Issues

- Better measured charm CC x-sec
- Need to understand radiative correction better
- Better understanding of higher twist effects

Conclusions

• NuTeV has improved $\sin^2\theta_W$

$$\sin^2 ?_w^{\text{On-shell}} = 0.2277 \pm 0.0013 \text{ (stat)} \pm 0.0009 \text{ (syst)}$$

 $\Rightarrow M_W^{\text{On-Shell}} = 80.14 \pm 0.08 \text{GeV/c}^2$

- NuTeV result deviates from SM prediction by about +3σ (PRL 88, 091802, 2002)
- Interpretations of this result implicates lower left-hand coupling (-2.6 σ) but good agreement in right-hand coupling with SM
- NuTeV discrepancy has generated a lot of interest in the community
 - Still could be a large statistical fluctuation (5σ has happened before)
 - No single one can explain the discrepancy
- NuTeV working on NLO analysis of $\sin^2\theta_W$
- A Neutrino factory can provide a dramatic improvement in $\sin^2\theta_W$
 - Large neutrino flux (both v_e and v_u)
 - Significant improvement in uncertainties (ΔM_W<25MeV)
 - Light target detector with p-id would be necessary
 - Theoretical improvement will help further improving the measurement