

Horn R&D for 2002-2003

Simone Gilardoni CERN – AB-ABP DPNC Université de Genève

For the CERN Horn working group
G. Grawer, G. Maire,
J.-M. Maugain, S. Rangod, F. Voelker

Nufact + SuperBeam

Different horn design&optimisation

Same technological issues:

- Lifetime estimation
- Target-horn integration

Horn focusing system

Horns available from the shelf

Numi: 200 kA, 0.5 Hz, 6M pulses

1 year

MinibooNe: 170 kA, 5 Hz, 11M pulses

1 year

K2K: 250 kA, 0.5 Hz, 11M pulses

1 year

Nufact: 300 kA, 50 Hz, 200 M pulses

6 weeks

CNGS: 150 kA, 2 pulse/6s, 42 M pulses 4 years

NuMi horn 2

MiniBooNE

KEK horn 1

KEK horn 2

CERN/NeuFact horn prototype

CNGS horn 2

(m)

The challenge of low v-energy

- The target is not point-like:
 - Normally 1-2 interaction lengths
 - Order 20-30 cm for heavy targets (Hg)
- Particle produced with large energy spread
 - Typical transverse momentum 250 MeV/c
 - Typical energy around 1 GeV (even less)
 - Large divergence
- In any case, from Van der Meer:
 - Max angle for a given momentum depends only on the <u>square root</u> of the current

$$heta_{MAX} = \sqrt{rac{\mu_0 I}{2\pi B
ho}}$$

Target inside or outside?

Target INSIDE for low energy

Max p_t more or less independent from the energy

•
$$p_t = 250 \text{ MeV/c}$$
 $p_{tot} = 600 \text{ MeV/c}$ $\theta = 24^{\circ}$ $R(z=30 \text{ cm})= 13 \text{ cm}$

$$p_{tot}$$
= 30 GeV/c

$$\theta = 0.47^{\circ}$$

$$R(z=30 cm) = 0.25 cm$$

TARGET AND HORN R&D HAVE TO GO TOGETHER

Double horn concept

Horn first prototype

What we planned to do

- First "inner" horn 1:1 prototype
- Power supply for Test One:
 30 kA and 1 Hz, pulse 100 μs long
 - ✓ First mechanical measurements
 - > Test of numerical results for vibration
 - ✓ Test of cooling system

40he

- Test Two: 100 kA and 0.5 Hz
 - Testing during this week
- Last test: 300 kA and 50 Hz

Unknown schedule

Goal: Horn Life-Time 6 weeks (2*108 pulses)

First prototype ready

Material choices

 AA 6082-T6 / (AIMgSi1) is an acceptable compromise between the 4 main characteristics:

- Mechanical properties
- Welding abilities
- Electrical properties
- Resistance to corrosion
- Same for CNGS

Max. allowed stress

Not compatible with Mercury

Horn prototype ready for tests

Electrical and water connections

Inside the neck

First discharger unit: 2 units in parallel

Power supply scheme

From scheme to reality

P.S. test on dummy load

Voltage on horn/tyristor: 1.5 kV

Current first unit =16kA

Current second unit =15kA

Horn current

- Channel 1: Voltage at anode of T₁ of first unit to ground (500V/div)
- Channel 2: Voltage at cathode of T₁ of first unit to ground (500V/div)
- Channel 3: Pulse current of second unit measured with CT1 (5000A/div)
- Channel 4: Pulse current of first unit measured with CT1 (5000A/div)
- Math 3: Channel 1 Channel 2, Voltage across T₁ (400V/div)

Acoustic frequency meas.

Horn eigenfrequencies from horn "sound"

Method validation: CNGS

Hz

Laser Measurements (prel.)

CNGS horn

Laser vibrometer

Preliminary vibration meas.

New campaigns of measurements with laser vibrometer and microphone with new power supply.

Any suggestions how to measure a surface that you cannot touch and with water flowing, the INNER conductor?

Next step: 100 kA - 0.5 Hz

Voltage on horn/thyristor: 2.5 kV

Current first/second unit 50 kA

This is the Limit for the existing equipment:

- Max voltage on thyristor
- Max rep rate for resistors

8 May 2003 09:20:13

Ch1: Current of unit one measured with current transformer. (10kA/div)

Ch2: Current of unit two measured with current transformer. (10kA/div)

M1: Voltage across thyristor. (1kV/div)
M2: Sum of both currents. (25kA/div)

Target and Horn integration

LAL Horn R&D

- Physicists: J.E Campagne, A. Cazes (Ph. D),
- Engineers: G. Macé, S. Wallon & J. Bonis,
 M. Omesh,...
- Previous experience: the CNGS Horn/Reflector

Other IN2P3 members:

J. Dumarchez (LPNHE), D. Autiero (IPNL), S.Katsanevas(IN2P3-adm)

Conclusions

- Results of last year for horn+power supply
 - Construction and test at 30 kA 1 Hz 100 μs
 - First evaluation of horn eigenfrequencies
- Horn CERN program for this year:
 - Measurement with new power supply
 - "Working point" with CNGS power supply
- New friends in the game, LAL draft program:
 - Secondary particles collection simulation
 - Electrical power supply studies
 - Mechanical Simulation
 - Thermal Simulation
 - Ready to be the manager of the project