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Outline of the Talk A

e Introduction to muon (g — 2)
e The theory, including beyond the SM
« E821 at Brookhaven

. » Systematic Errors and what we must do
; better.

» A close look at a,(had)
« Summary and Outlook



s = gs(=—)5 Magnetic Moment
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4= —- the anomaly

* [i - magnetic moment;
e ¢ - gyromagnetic ratio
e 5Is the spin.



Dirac Equation Predictg = 2 A

For a NR ¢~ in a weak B-field:
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. make g # 2.
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Dirac Kusch and Foley, Ve v
Schwinger, 1947

In the paper where they showed ¢, # 2, Kusch
and Foley showed g, = 1. PR 77, 250 (1948)




Magnetic Moments: Values A

eh .
te = 1.001 159 652 193 ; For comparison :
Me
h hoo
1, = 1.001 165 923 —— by = 2.792 847 39



Electric Dipole Moments? A

Just as the magnetic energy is —i - B, the
electric energy is —d - E, or

—

H=—ji-B—d-E
Transformation properties of E, B, ji and d:
E|B|jord
+

Pl - |+
C - - -
T|+ | - -

ii- Biseven, and d - E is odd under both P and T
An EDM implies that both P and T are violated.



Electric and Magnetic Dipolef\:
Moments for the Muon 1
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where «, 3 run from O to 3, and d,, Is the electric
dipole moment. Or we could write:
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SM Theory for Muon(g — 2)

Q
+ higher order terms
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New Physics Beyond the SM? A

If the experimental value of a,/d,, does not equal
the SM value,

a|d,|(NP) = ay|d,|(Measured) — a,[d,](SM)

As an example of non-standard model physics
we use SUSY to show the connection between
the MDM, EDM and Muon Conversion.



Connection Between MDM, £\
EDM and;, — e in SUSY :

In SUSY the MDM, EDM and muon conversion
are all inter-related:

H—> e MDM
EDM
: v e v v
i S e o \ M
B B




polarized muons
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s Outer cryostat upper pole
— P =7112 mm

lower magnet pole

heat shield
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Spin and Momentum PrecessionAg

elB gels elB
wWo = —— Wws — | (1 _ 7)—
moy 2m Ym
. — 2. eb
w (S relative to p) Wy = W — Wo = (g 5 )6
m

nb. If g =2, wg = we

Spin Motion in E and B Fields.




The highest energy
decay et are along
the muon spin
direction

In a uniform B field all muons precess at the same
rate.

Spin and Momentum PrecessionAé

Momentum —



The Ring Layoutr /

|nfle=cto

gquads
2 cover
traceback 43% of
[Fchambers .
I the ring
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Schematic of the Magnet A

thermal
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pole piece
8 Eﬁ:ﬁ{ o2l fixed
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NMR probes on the
trolley maps the

B Field in the
storage region

B e
g-2 Magnet in Cross Section
P=7112 mm
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Installatlon of a Pole Plece
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Storage Ring Parameters A

Parameter Value Comments
(g-2) Frequency fa ~0.23 x 105 Hz T, = 4.374S
Muon kinematics p, = 3.094 GeVlc Yo = 29.3
E T = 64.4 us
Cyclotron Period Teye = 149 NS
Central Radius p="T7112 mm (280")
By=1451T Storage Aperture 9.0 cm circle
In one lifetime: 432 revolutions around ring
14.7 (g-2) periods
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The Nude Storage Ring
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Weak Focussing n = £k A

5By
+ = electric quadrupole gradient; n ~ 0.137

Y mu? . ymo?

2 (1—n) x = 0; ymiyj R

ny=>~0

YMI-

= VT~ 0920fci f, = fo/n = 0.37fc

Detector acceptance depends on r. The beam
coherently moves radially relative to a detector
with coherent betatron motion.



Coherent Betatron Frequency A
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feceo=fe—fo=(1—-+v1-n)fc

(AcBo ~ 14 turns)
fecso amplitude modulates the e* signal.
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The Detector Geometry
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muon spin  Sci-Fi Calorimeter
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- Time Spectrump > 2.0GeV :
Ogtat ~ 0.7 ppm :
f(t) = Noe M1 + Acos(wat + ¢)] :

4 Billion Positronswith E> 2 GeV L

100-200 pis

200-300 pis o

Number of Positrons/149ns

300-400 ps °

=
o
®

{1 400-500 s

: 500-600 pis °
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Present Statistical Errors A

Data Set | Statistical Systematic | Status
Error (ppm) | Error (ppm) | (# Events)
1999 ,*+ | 1.25 0.5 T, 10°
2000 4+ | 0.6 0.43 T, 4 x 10”
2001 4= | ~ 0.7 ~03—04 | *,~3—4x10°
‘Published xProjected
Data Set # of Events | Statistical Error (ppm) |-
Total 1" 5 x 10? 0.56
Total present 1~ ~ 3 x 10° ~ 0.7
Total present u* & = | ~ 8 x 10° ~ 0.44
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Systematic Errors oA w, >

—-rom two independent analyses of < w, >.

Source 1999 | 2000
(ppm) | (PpmM)
Inflector Fringe Field 0.20 :
Calibration of trolley probes 0.20 | 0.15
Interpolation with fixed probes | 0.15 | 0.10
Trolley measurements of By 0.10 | 0.10
Uncertainty from p-distribution | 0.12 | 0.03
Absolute calibration 0.05 | 0.05
Others! 0.15 | 0.10
Total systematic error on w), 0.4 | 0.24

BOSTON
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Systematic Errors (ppm) an, A

Source 1999 | 2000
Pile-Up 0.13 | 0.13
AGS Background 0.10 | 0.01
Lost Muons 0.10 | 0.10
Timing Shifts 0.10 | 0.02
; E-field and vertical 5-motion | 0.08 | 0.03
Fitting Method / Binning 0.07 | 0.06
Coherent Betatron Oscillation | 0.05 | 0.21
Beam debunching 0.04 | 0.04
Detector Gain Changes 0.02 | 0.13
Total Systematic on w, 0.3 | 0.31
.............................................



We must take a closer look at the hadronic
contribution to a,,

For an improved experiment to be meaningful,

our knowledge of the hadronic contribution must
. be improved.
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a, Had from Dispersion TheoryA

h

T[O T
Use of 7-decays = Isospin, CVC, no 2"?-class
currents, only isovector current.

0, (had; 1) = (27022 / K (s)R(s)

37’(‘ 2 82

+

- o(e"e” — hadrons)




e’e” — hadrons

m Crystal Ball c
A PLUTO L

e'e” — hadrons o
A LENA o

m Crystal Ball L
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Status of Hadronic Contribution

* In Feb. 2001 E821 announces a 1.3 ppm
measurement which disagrees with the
theory by 2.6 o.

» The community re-examines a,(Had).

e [n October 2001, Eduardo de Rafael
announces that Marc Knecht and Andreas
Nyffeler at Marsellle found that the sign of the
hadronic light-by-light contribution is positive
not negative, and the difference with theory
becomes 1.6 o.



Hadronic Contribution, ctd. A

 In February 2002 Novosibirsk publishes new
more precise ete cross sections. Theorists
re-evaluate and find that e e~ and = no longer
agree. The eTe™ analysis gives a ~ 30
discrepancy and the 7 gives ~ 1.6 o.

e February 2003 Novosibirsk finds a
normalization error (missing radiative
correction to the Bhabha cross section) and
begins a re-evaluation of all of their radiative
corrections and comparison with other codes.

 Let’s look at the e"e™ and the + analyses
further.



From e"e™ and
“Isospin corrected”
T data,

expressed as
anete”
Cross-section.

From DEHZ
hep-ph/0208177
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T — v ) VIS, eter — wtwe

T Average
preliminary

From Davier, Eidelman, Hocker, Zhang: hep-ph/0208177v3, 12 January 2003

We await the re-analysis from Novosibirsk, and

. additional data from DAPNE.
ooooooooooooooooooooooooooooooooo . :ee oR Oboe rtsoy ) JFA; 0376 J.u neozo 0.3 _.p_g;B!



Outlook A

« We are left with questions, both experimental
and “theoretical”
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Outlook A

« We are left with questions, both experimental
and “theoretical”

| assume that the “theoretical” issues will be
cleared up over the next few years. We can
hope that the theory will improve to the 0.1 to

, 0.08 ppm level, with the continued work at
, eTe” machines. DA®NE, Novosibirsk, and 7
facilities.



Outlook A

« We are left with questions, both experimental
and “theoretical”

| assume that the “theoretical” issues will be
cleared up over the next few years. We can
hope that the theory will improve to the 0.1 to

, 0.08 ppm level, with the continued work at
eTe” machines. DA®NE, Novosibirsk, and 7
facilities.

« As we finish the analysis of our last data set,
we are beginning the process of figuring out
how to improve the apparatus for a next
generation experiment.



Conclusions A

» Whatever the final answer for a,, it will provide
an important constraint on new theories. The
opportunity to improve on a, will constrain

: them further, or point to a window for new
; physics.
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Conclusions A

» Whatever the final answer for a,, it will provide
an important constraint on new theories. The
opportunity to improve on a, will constrain

them further, or point to a window for new
physics.

« \We are now actively exploring possibilities at
higher intensity facilities where we could push
(9 — 2) to further precision.
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