Towards an improved determination of the Fermi coupling constant from the μ Lan experiment

Gerco Onderwater

University of Illinois at Urbana-Champaign

Outline

- Interest in G_F
 - Status of G_F
 - \bullet μ Lan Philosophy
 - μLan Status
 - μ Lan Outlook

Inputs to the Standard EW Model

fine structure constant

 α = 1/137.035 999 76 (50)(0.004 ppm)

Fermi constant

$$G_F = 1.16639(2) \times 10^{-5} \text{ GeV}^{-2} (17 \text{ ppm})$$

Z-boson mass

$$M_Z = 91.1876(21) \text{ GeV}/c^2 (23 \text{ ppm})$$

From the Muon Lifetime to G_F

$$\frac{1}{\tau_{\mu}} = \Gamma_{\mu} = \frac{G_F^2 \, m_{\mu}^5}{192 \, \pi^3} \, (1 + \Delta q)$$

Experimental Status of the Muon Lifetime

```
\hat{\tau} = (2.19703 \pm 0.00004) \times 10^{-6} \text{ s}
avg.
        Bardin et al.
1984
                                               \pm 66 ps
                                                           10^{9}
        Giovanetti et al.
                                               \pm 60 ps
1984
                                               \pm 80 ps
1974
        Balandin et al.
1973
        Duclos et al.
                                              \pm 300 ps
                                                           10^{8}
1972
        Williams & Williams et al.
                                              \pm 800 ps
        Meyer et al.
                                            \pm 2000 ps
                                                           10^{6}
1963
        Lundy
                                            \pm 4000 ps
1962
        Anderson and Neddermeyer
1936
                                             discovery
```

$$G_F = (1.16637 \pm 0.00001) \times 10^{-5} \text{ GeV}^{-2} \text{ (9 ppm)}$$

µLan Goal and Challenges

$$oldsymbol{\Delta} au \simeq 2$$
 ps (1 ppm)

Design:
$$\begin{cases} \text{How to collect} > \text{10}^{\text{12}} \ \mu\text{-decays} \\ \text{How to keep syst. error} < \text{1 ppm} \end{cases}$$

Philosophy to Reach a 1 ppm Uncertainty

Source: $\pi E3$ Surface Muon Beam at PSI

ASK71

New beamtune for existing beamline Extended beamline by $\sim 10 \text{ m}$

11 MHz Rate on target easily achieved

Creating a Pulsed Muon Source

Reducing Polarization Systematic Error

Problem: Front-back asymmetry

Solutions:

- ① Reduce polarization with target→ sulphur
- ② Dephase spins during μ collection
- ③ Fast precession during measurement
- ④ Front-back symmetric detector

The Soccer Ball

Truncated icosahedron ($\sim 4\pi$ coverage, Point-symmetric) Fine segmentation (180) to reduce pileup.

The Scintillator Elements

- ① 2 layers 3 mm BC404
- 2 80 p.e. light output
- 3 Short pulse (7 ns FWHM)
- ⊕ 90° light guides

Timing from 500MS/s Waveform Digitizers

- A prototype was built and tested.
- ② Provides accurate timing information
- ③ Custom 'personalities'

Conclusions and Outlook

Hardware approaching completion

2003 July Kicker commisioning

October Data taking $\sim 10^{-5}$

2004 Production Run I

2005 Production Run II

