Theoretical Study on the Lepton Flavor Violating μ-e Conversion in Nuclei

Masafumi Koike (KEK)

in collaboration with

Ryuichiro Kitano (IAS)
Shinji Komine (KEK)
Yasuhiro Okada (KEK)

Plan

1. Introduction
2. Methods
3. Numerical Results
4. Discussion
5. Summary
1. Introduction

the Standard Model
- Massive neutrinos?
- Hierarchy problem?
- Charge quantization?

no LFV

Extentions of the SM
- Right handed neutrinos
- Supersymmetry
- Grand Unification

LFV Search
- $\mu \rightarrow e\gamma$
- $\mu-e$ conversion
- $\mu \rightarrow 3e$
- $\tau \rightarrow \mu\gamma$ etc...

Experimental Limits on the Branching Ratios

<table>
<thead>
<tr>
<th></th>
<th>Present</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu \rightarrow e\gamma$</td>
<td>1.2×10^{-11} (MEGA 1999)</td>
<td>10^{-14} (PSI MEG) 10^{-15} (J-PARC)</td>
</tr>
<tr>
<td>$\mu-e$ conversion</td>
<td>6.1×10^{-13} (SINDRUM II 1998)</td>
<td>2×10^{-17} (MECO) 10^{-18} (J-PARC)</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu\gamma$</td>
<td>1.0×10^{-6} (Belle 2001)</td>
<td>10^{-8} (Belle)</td>
</tr>
<tr>
<td>$\mu^+ \rightarrow e^+e^+e^-$</td>
<td>1.0×10^{-12} (CDF)</td>
<td></td>
</tr>
</tbody>
</table>
μ-e Conversion in nuclei:
(Neutrinoless muon capture)

\[\mu^- + \frac{A}{Z} N_i \rightarrow e^- + \frac{A}{Z} N_f \]

(cf. Ordinary muon capture:
\[\mu^- + \frac{A}{Z} N_i \rightarrow \nu_\mu + \frac{A}{Z-1} N_f \])

Coherent process is dominant.

\[\frac{A}{Z} N_i = \frac{A}{Z} N_f = \text{Ground state} \]

▶ **a) Initial state — muonic atom**

\[a_B^{(\mu)} \approx \frac{1}{200} a_B^{(e)} \]

▶ **b) Final state — monochromatic electron**

\[E_e = m_\mu - E_{\text{binding}} - E_{\text{recoil}} \]

\[\approx m_\mu - E_{\text{binding}} \]
Why $\mu - e$ conversion?

1. Non-Photonic + Photonic interaction

```
µ --- e
```

- Contribution from
 - 4-Fermi effective interaction
 - Photon-penguin interaction

More info on THEORY

2. Monochromatic electron signal

Intense beam = Higher precision

Clean, precise EXPERIMENT

Why muon ring?

- Free from π and e in the beam
- Extinguishes prompt backgrounds:
 - Radiative π^- capture
 \[\pi^- + (A, Z) \rightarrow (A, Z-1) + \gamma \]
 \[\rightarrow e^+ e^- \]
 undetected
 - e in the beam scattered off the target

Lifts restriction on the selection of target nuclei! — Need not to worry about the lifetime of muonic atoms.
Electron momentum distribution@SINDRUM

http://sindrum2.web.psi.ch/home/lead92.html

Target: Pb
Studies on LFV μ-e conversion

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>μ wave function</td>
<td>Constant</td>
<td>Dirac eq.</td>
<td>Dirac eq.</td>
<td>Schrödinger eq.</td>
<td>Dirac eq.</td>
</tr>
<tr>
<td>e wave function</td>
<td>Plane wave</td>
<td>Dirac eq.</td>
<td>Dirac eq.</td>
<td>Plane wave</td>
<td>Dirac eq.</td>
</tr>
<tr>
<td>q^2</td>
<td>$q^2 = -m_\mu^2$</td>
<td>$q^2 = -m_\mu^2$</td>
<td>Electric fields</td>
<td>$q = m_\mu - E_{bind}$</td>
<td>Electric fields</td>
</tr>
<tr>
<td>LFV interaction</td>
<td>Photonic</td>
<td>All</td>
<td>Photonic + Vector</td>
<td>4-Fermi</td>
<td>All</td>
</tr>
<tr>
<td>$\rho^{(p,n)}(r)$</td>
<td>Approximate formula</td>
<td>Approximate formula</td>
<td>Experimental data (3 points)</td>
<td>Experimental data</td>
<td>Experimental data</td>
</tr>
</tbody>
</table>
We will be able to choose the target nucleus.

Which is the best, then,

- to discover the $\mu - e$ conversion?
- to investigate the new physics, physics beyond the Standard Model?

Thorough investigation is necessary.
2. Methods

Proton distribution in nuclei

Charge distribution = Proton distribution

Maxwell equation
Dirac equation — Relativistic

Wave functions of initial μ & final e

Proton & neutron distribution in nuclei

Overlap integrals appearing in the μ-e transition amplitude

μ-e transition amplitude

μ-e transition rate
Input data

Proton density in the nucleus: $\rho^{(p)}(r)$
--- Electron scattering experiments
Determined very precisely (within a few %). Various nuclei are measured.

Neutron density in the nucleus: $\rho^{(n)}(r)$
--- Scattering experiments (proton, α, π^+)
--- Spectroscopy (π atom, \bar{p} atom)
(Relatively) poorly determined.
Not many data are available.

We also present the result obtained from $\rho^{(n)}(r) = \rho^{(p)}(r)$ assumption.

No justification for heavy nuclei.

Provides the tendency of the Z-dependence of the conversion amplitude/rate, thanks to the large data set.
LFV interaction Lagrangian

\[\mathcal{L}_{\text{int}} = -\frac{4G_F}{\sqrt{2}} (m_\mu A_R \bar{\mu} \sigma^{\mu\nu} P_L \epsilon F_{\mu\nu} + m_\mu A_L \bar{\mu} \sigma^{\mu\nu} P_R \epsilon F_{\mu\nu} + \text{h.c.}) \]

Dipole (photonic)

\[-\frac{G_F}{\sqrt{2}} \sum_{q=u,d,s} \left[\left(g_{LS(q)} \bar{e} P_R \mu + g_{RS(q)} \bar{e} P_L \mu \right) \bar{q} q \right] \]

Scalar

Pseudoscalar

Vector

Axial vector

Tensor

Electric field

\[E(r) = \frac{Ze}{r^2} \int_0^r dr' r'^2 \rho^{(p)}(r') \]

Electric potential

\[V(r) = -e \int_r^\infty dr' E(r') \]

Transition amplitude

\[M = \langle f | V | i \rangle \]

Electric field

\[M = \frac{4G_F}{\sqrt{2}} \int d^3x \left(m_\mu A_R \bar{\epsilon}^{\mu(\tau)} \sigma^{\alpha\beta} P_R \psi^{(1)a}_{L} \psi^{(2)a}_{L} + m_\mu A_L \bar{\epsilon}^{\mu(\tau)} \sigma^{\alpha\beta} P_L \psi^{(1)a}_{L} \psi^{(2)a}_{L} \right) \langle N | i_{F_{\alpha\beta}} | N \rangle
+ \frac{G_F}{\sqrt{2}} \sum_{q=u,d,s} \int d^3x \left[\left(g_{LS(q)} \bar{\epsilon}^{\mu(\tau)} \sigma^{\alpha\beta} P_R \psi^{(1)a}_{L} \psi^{(2)a}_{L} + g_{RS(q)} \bar{\epsilon}^{\mu(\tau)} \sigma^{\alpha\beta} P_L \psi^{(1)a}_{L} \psi^{(2)a}_{L} \right) \langle N | q q | N \rangle
+ \left(g_{LV(q)} \bar{\epsilon}^{\mu(\tau)} \gamma^\alpha P_L \psi^{(1)a}_{L} \psi^{(2)a}_{L} + g_{RV(q)} \bar{\epsilon}^{\mu(\tau)} \gamma^\alpha P_R \psi^{(1)a}_{L} \psi^{(2)a}_{L} \right) \langle N | q \gamma^\alpha q | N \rangle
+ \left(g_{LA(q)} \bar{\epsilon}^{\mu(\tau)} \gamma^\alpha P_L \psi^{(1)a}_{L} \psi^{(2)a}_{L} + g_{RA(q)} \bar{\epsilon}^{\mu(\tau)} \gamma^\alpha P_R \psi^{(1)a}_{L} \psi^{(2)a}_{L} \right) \langle N | q \gamma^\alpha q | N \rangle
+ \frac{1}{2} \left(g_{LT(q)} \bar{\epsilon}^{\mu(\tau)} \sigma^{\alpha\beta} P_R \psi^{(1)a}_{L} \psi^{(2)a}_{L} + g_{RT(q)} \bar{\epsilon}^{\mu(\tau)} \sigma^{\alpha\beta} P_L \psi^{(1)a}_{L} \psi^{(2)a}_{L} \right) \langle N | q \sigma_{\alpha\beta} q | N \rangle \right] \]

Transition rate

\[\omega_{\text{conv}} = |M|^2 \]
3. Numerical Results

Dirac equation for the radial part of the wave function

Wave function: \(\psi_{nm}(\vec{r}) = \frac{1}{r} \left(\frac{u_1(r)}{iu_2(r)} \chi_{\kappa}^m \right) Y_1^m(\theta, \phi) \)

\[
\frac{d}{dr} \left(\begin{array}{c} u_1(r) \\ u_2(r) \end{array} \right) = \left(\begin{array}{cc} -\kappa/r & W - V + m_\mu \\ -(W - V - m_\mu) & \kappa/r \end{array} \right) \left(\begin{array}{c} u_1(r) \\ u_2(r) \end{array} \right)
\]

\(W \): Energy eigenvalue
\(\kappa \equiv -(\vec{L}\vec{\sigma} + 1) = -1 \) for 1S state

Initial state:
The wavefunction of \(\mu \)

Final state:
The wavefunction of \(e \)

Conversion rate --- written in terms of five Overlap integrals

\[
\omega_{\text{conv}} = 2G_F^2 \left| A_R^* D + \tilde{\gamma}_{LS}^{(p)} S^{(p)} + \tilde{\gamma}_{LS}^{(n)} S^{(n)} + \tilde{\gamma}_{LV}^{(p)} V^{(p)} + \tilde{\gamma}_{LV}^{(n)} V^{(n)} \right|^2
+ 2G_F^2 \left| A_L^* D + \tilde{\gamma}_{RS}^{(p)} S^{(p)} + \tilde{\gamma}_{RS}^{(n)} S^{(n)} + \tilde{\gamma}_{RV}^{(p)} V^{(p)} + \tilde{\gamma}_{RV}^{(n)} V^{(n)} \right|^2
\]
Transition amplitudes — Overlap integrals

"$\rho^{(n)}(r) = \rho^{(p)}(r)$" assumption

\[D = \frac{4}{\sqrt{2}} m_\mu \int_0^\infty dr r^2 [E(-r)][g_\mu^- f_\mu^- + f_\mu^- g_\mu^-] \]

\[S^{(p)} = \frac{1}{2\sqrt{2}} \int_0^\infty dr r^2 Z \rho^{(p)} [g_\mu^- g_\mu^- - f_\mu^- f_\mu^-] \]

\[S^{(n)} = \frac{1}{2\sqrt{2}} \int_0^\infty dr r^2 (A - Z) \rho^{(n)} [g_\mu^- g_\mu^- - f_\mu^- f_\mu^-] \]

\[V^{(p)} = \frac{1}{2\sqrt{2}} \int_0^\infty dr r^2 Z \rho^{(p)} [g_\mu^- g_\mu^- + f_\mu^- f_\mu^-] \]

\[V^{(n)} = \frac{1}{2\sqrt{2}} \int_0^\infty dr r^2 (A - Z) \rho^{(n)} [g_\mu^- g_\mu^- + f_\mu^- f_\mu^-] \]

Larger difference for heavy nuclei.

Useful to distinguish the models beyond the SM.
Conversion branching ratios

$$\omega_{\text{conv}} = 2G_F^2 |A_R^* D + \tilde{g}_L^{(p)} S^{(p)} + \tilde{g}_L^{(n)} S^{(n)} + \tilde{g}_L^{(p)} V^{(p)} + \tilde{g}_L^{(n)} V^{(n)}|^2$$
$$+ 2G_F^2 |A_L^* D + \tilde{g}_R^{(p)} S^{(p)} + \tilde{g}_R^{(n)} S^{(n)} + \tilde{g}_R^{(p)} V^{(p)} + \tilde{g}_R^{(n)} V^{(n)}|^2$$

$$\text{Br}(\mu^{-} + \frac{Z}{A} N \rightarrow e^{-} + \frac{Z}{A} N) \equiv \frac{\Gamma(\mu^{-} + \frac{Z}{A} N_i \rightarrow e^{-} + \frac{Z}{A} N_f)}{\Gamma(\mu^{-} + \frac{Z}{A} N_i \rightarrow \nu_{\mu} + \frac{Z-1}{A} N'_f)}$$

"\rho^{(n)}(r) = \rho^{(p)}(r)" \text{ assumption}

Z \sim (30 — 60) gives the largest rate.

The model of new physics can be distinguished through the measurement of $\mu - e$ rate for several kinds of nuclei.
\(\rho^{(n)}(r) \) from the proton scattering experiment

Transition amplitudes — Overlap integrals

Conversion branching ratios
$\rho^{(n)}(r)$ from the pionic atom spectroscopy

Transition amplitudes — Overlap integrals

Conversion branching ratios
4. Discussion

The ambiguities are chiefly due to the poor knowledge on the **neutron distribution in nuclei**.

Scattering experiments, Spectroscopy, ...

\[S^{(n)} \text{ and } V^{(n)} \text{suffers from the ambiguity.} \]

- **Light nuclei** \[Z < (\sim 50) \]
 - Agrees anyway within (a few) \%.
 - (including "\(\rho^{(n)}(r) = \rho^{(p)}(r) \)" assumption)

- **Heavy nuclei** \[Z > (\sim 50) \]
 - Results of recent scattering experiments on Pb
 - Experimental error leads to (a few) \% of ambiguity.
 - Spectroscopy gives (10 – 20)\% smaller values.

Spectroscopic methods gives info on the neutron distribution at the **peripheral** region, which is **extrapolated** into inside the nucleus under a certain assumption.

Neutron density distribution is known for limited species of nucleus at present.
5. Summary

- LFV $\mu - e$ conversion search is clean and informative.

- Muon ring enables the $\mu - e$ conversion search with various target nuclei.

- Nuclei with $Z \sim (30 - 60)$ gives the largest $\mu - e$ conversion rate.

- The measurements with different nuclei are useful to distinguish the theoretical models with LFV.

- Ambiguity is small for light nuclei (within a few %).

- Recent scattering experiments on Pb gives us a hope that ambiguity can be made small for heavy nuclei also.