CC Disappearance and ν_e Appearance in the NuMI Off-Axis Beam

R. Bernstein FNAL NuFact '03

Outline

- CC Disappearance:
 - Physics and Detector Assumptions
 - Correlations and the Physical Boundary
 - Results
- ν_e Appearance:
 - Detector Choices
 - Results
 - Conclusions

Physics and Detector Assumptions for CC Disappearance

- Searching for $\nu_{\mu} \rightarrow \nu_{\tau}$
- Off-Axis Detector: 10 km at 735 km
- Un-magnetized Detector with Calorimetry from Hit Counting:
- §1. $\sigma/E = 1.0/\sqrt{E}$ as in FMMF (R. Hatcher, priv. comm.) (Contrast to $0.8/\sqrt{E}$ CCFR and $0.55/\sqrt{E}$ NuMI)
 - §2. No μ Tracking or Pattern-Recognition

Two Points Above Imply
No Spectral Information, so

- Σ events from 1–3 GeV so total rate test, relies on " δ -fcn" beam:
 - $-\nu_{\mu}$ at 2 GeV after oscillation won't reconstruct at 2 GeV

Choices somewhat Arbitrary, Based On Notion that NC Contamination Dominates Error

Choice	Reason	Alternative
1–3 GeV Range	Around Peak and 1σ	Tune
Hit-Counting	No Calorimetry	Calorimeter
No Muon Tracking	π/μ 's Look Identical	H_2O Ch.
Total Rate	No Spectral	Calorimetry

• Algorithm: ν_{μ} Oscillates to:

Channel	CC	NC
$ u_{ au}$	below threshold	Identical to ν_{μ} NC
$ u_e$	ignore	ignore

For now, ignore ν_{τ} NC interactions which pass cuts...

- Suggestion:
 - §1. Investigate Spectral Test
 - §2. Quasi-Elastics

Neyman-Pearson Hypothesis Test

- aka Feldman-Cousins
- "Most Powerful" Accept-Reject
- Constructs Confidence Levels
- Correctly Handles Physical Boundary and Correlated Errors

Generate $\Delta \chi^2$ Distribution Before Experiment Ever Runs

- Choose point in Δm^2 , $\sin^2 2\theta$ space
- Run Many "Experiments" From that Point:
- Allow All Errors to Fluctuate
 According to Hypothesized Error Dist
 - §1. Gaussian, Flat, Poisson, ... etc.
 - §2. Throw Correlated Errors Together
- e.g., correlated flux: affects entire data set
 ⇒ Each "experiment" throws a single
 different correlated flux error
- End Up With Distribution in Error Space With all Correlations Properly Handled and Weighted According to Probability Distribution for Each Error

- For each point in $(\Delta m^2 \sin^2 2\theta)_{\text{true}}$:
 - §1. Throw errors and form a fake experiment
 - §2. Fit that experiment to some $(\Delta m^2 \sin^2 2\theta)_{\text{best fit}}$ $\Rightarrow not true point in general!$
 - §3. Compare to each point in parameter space: calculate

$$\Delta \chi^2 = \chi^2 - \chi^2 \text{(best fit)}$$

for one of which, best-fit point, $\Delta \chi^2 = 0$

- §4. Form $\Delta \chi^2$ over ensemble of fake experiments from original $\Delta m_{\rm true}^2 \sin^2 2\theta_{\rm true}$
- §5. Integrate distribution out to 90% for 90% $CL = \chi_{90}^2$

• $\Delta \chi^2$ is what is used to determinine confidence levels

Compare Data to Distribution

- Do the experiment, take data, and treat it *exactly* like one of the ensemble of "fake experiments"
- $-\operatorname{Is} \Delta \chi^2 < \chi_{90}^2$ for some point in paramter space?
 - §1. Yes: In Allowed Region
 - §2. No: Not Allowed
- Same for Signal and Exclusion!

 $\sin^2 2\theta$

• $\Delta \chi^2$ of Data at Some Δm^2 , $\sin^2 2\theta$

$$\Delta \chi^2 = \chi^2 - \chi^2 \text{(best fit)}$$

Advantages

- §1. Separate Hypothesis Testing from "Goodness-of-Fit"
- §2. Can Have Poor χ^2 Distribution but Still Finds Right Region
- §3. Handles Correlations and Boundaries Correctly
- §4. "Simple" to Rigorously Combine Experiments

Disadvantages

- §1. If Best Fit is bad, subtraction gives small $\Delta \chi^2$
- §2. Separate Hypothesis Testing from "Goodness-of-Fit"
- §3. Can Have Poor χ^2 Distribution but Still Finds Some Allowed Region

e.g. Combined LSND/KARMEN fits

• Errors:

Statistical	100 kt· years	
Beam		
Correlated Flux	3%	
Random Flux	2% in any 1 GeV bin	
Shape	$A\sin(\lambda E_{\nu}/5.+\phi)$	From
	10 < A < .10 flat	studying
	$0 < \lambda < 2\pi \times 5 \text{ flat}$	hep-ex/ 0110001 ,
	$0 < \phi < 2\pi$ flat	0110032
Detector		
Hadronic Energy	$1.0/\sqrt{E}$	
Muon Momentum	not separately seen	
	include with hadron shower energy	

• Shape Error from

- §1. Extrapolation from Near Detector
- §2. Magnetic Horn Elements
- §3. GEANT/FLUKA/...
- Correlated Flux from
 - §1. Fiducial Volume and Mass of Near, Far Detectors

Can We Do Better?

- Doing Better on $\sin^2 2\theta$:
 - Flux Prediction < 1%
 - Fiducial Mass < 1%
 - §1. Weigh Every Detector Element
 - §2. Understand Fiducial Volume (internal alignment, gaps, dead regions, . . .
- Doing Better on Δm^2
 - §1. Need Calorimetry and Muon Tracking
 - §2. Cost Goes Way Up, but see next part of talk...

Electron Neutrino Appearance

- Simulated LAr and Fe/Scint: 100 kt·yr exposure
- NuMI Medium Energy Beam
- ν_e Rate from r = 10 km, z = 735 km

Detector	Signal Efficiency	NC Fake Rate	Res
LAr	0.90	0.001	$0.1/\sqrt{E}$
Fe/Scint	0.40	0.002	$0.55/\sqrt{E}$

See D.A. Harris et al., hep-ex/0304017

• Fiducial Mass for LAr for 20 kt:

• Fiducial Mass for Fe/Scint 80%

• Ignore CP/Matter, just plot as if in vacuum

• Starting Spectrum:

- Same Beam-Related Errors as in CC Disappearance
- Reconstruction Efficiency known exactly
- Backgrounds (stat. fluctuations only):
 - NC's that appear as ν_e
 - $-\nu_e$ beam background

Results

- Complete Spectrum
- NC's Only
- \bullet Background ν_e

- Complete Spectrum
- NC's Only
- \bullet Background ν_e

$$\Delta m^2 = .003$$
, $\sin^2 2\theta = .01$

What Do These Plots Tell Us?

- Superior Resolution Makes LAr More Robust
- Less Sensitive to Level Fluctuations in Beam Backgrounds, etc.

normalized to same number in peak, so resolution effect only

$$\Delta m^2 = .003$$
, $\sin^2 2\theta = .05$

Conclusions

- Can See Effects Down to $\sin^2 2\theta = 0.01$
- LAr Much Better
- Beam-Related Systematics Not Large Effect
- Fe/Scint "Running Out of Steam" at < 5 %
- Speaking of Steam, Need Help with H₂O