Present Understanding of Low Energy Neutrino Cross Sections

Sam Zeller Columbia University

NuFact 03 Columbia University, New York WG1/WG2 Joint Session June 10, 2003

<u>Outline</u>

- Why is it important to know low energy σ_{ν} 's?
- How well have we <u>modeled</u> low energy σ_{ν} ?
 - \hookrightarrow brief overview of neutrino event generators
- How well have we <u>measured</u> low energy σ_{ν} ?
 - \hookrightarrow past ν measurements
 - \hookrightarrow knowledge from bubble chamber experiments
 - \hookrightarrow stick mainly to free nucleon cross sections
- Prospects for the future

Motivation

- Last 5 years have given us compelling indications that neutrinos oscillate
- Evidence for ν mass has sparked intense interest in neutrino experiments ...
 - CHOOZ
 - ICARUS I
 - KamLAND
 - K2K
 - MINOS
 - OPERA
 - Palo Verde
 - BUGEY
 - CHORUS
 - Karmen
 - LSND
 - MiniBooNE
 - NOMAD

- IMB
- Kamiokande
- MACRO
- Soudan 2
- Super Kamiokande
- BOREXINO
- Homestake
- GALLEX
- GNO
- SAGE
- SNO

Where Do Cross Sections Matter?

Why do we need to know low energy ν cross sections?

- Atmospheric Neutrinos
 - $\hookrightarrow \Delta m_{23}^2$, θ_{23} limited by systematics on flux, σ_{ν}
 - $\hookrightarrow \nu_{\mu} \to \nu_{\tau}$ or $\nu_{\mu} \to \nu_s$ limited by σ_{ν} uncertainties
- Proton Decay Searches
 - \hookrightarrow good knowledge of σ_{ν} required to reliably evaluate expected backgrounds
- Appearance Experiments ($u_{\mu} \rightarrow
 u_{e}$), θ_{13}
 - → limited by stat and syst uncertainty of background subtraction
 - $\hookrightarrow \nu_e$ component in the beam
 - \hookrightarrow misidentified NC π^0 production (important to not only understand rate but contributions from different channels)
 - \star resonant single π^0 production
 - \star coherent π^0 production
 - feed down from inelastic channels
 (where nuclear absorption of add'l hadrons plays a role)

Systematics are already beginning to dominate these measurements

Status of Low E_{ν} Cross Sections

Knowledge of ν differential and total cross sections in low energy region is limited:

One of biggest challenges is getting the physics right over a large range of energies (100's MeV \rightarrow 100's GeV)

No consensus on best way to combine channels at fixed E_{ν}

- DIS limited to W > W₀ to avoid double counting
- modeling DIS at low E (U.K. Yang WG2 6/9)

Principal reactions:

- quasi-elastic scattering
- resonance production
- deep inelastic scattering

Modeling Low E ν Cross Sections

- Recent neutrino experiments using a variety of Monte Carlos (many have long histories)
 - → NUANCE* (IMB, K2K, SuperK, MiniBooNE)
 - \hookrightarrow NEUT (Kamiokande, K2K, Super K)
 - \hookrightarrow **NEUGEN**^{*} (Soudan 2, MINOS)
 - → NUX, GENEVE (Icarus, NOMAD)
 - → JETTA, RESQUE (CHORUS, OPERA)
- Generally these Monte Carlos are "proprietary" (many are not well documented publicly) → exceptions*

Big thanks to Dave Casper & Hugh Gallagher for their help

- Share common theoretical inputs
 - \hookrightarrow Llewellyn Smith for free nucleon QE cross section
 - \hookrightarrow Rein–Sehgal resonance cross sections
 - \hookrightarrow standard DIS formula for high W, Q^2
- But nontrivial differences
 - \hookrightarrow implementation of Fermi gas model for QE
 - \hookrightarrow joining of resonance and DIS regions
 - \hookrightarrow treatment of nuclear effects (final state interactions of π, K, n, p)

Nuclear Effects

Oscillation experiments measure ν reactions on nuclear targets $(O^{16}, C^{12}, Ar^{40}, Fe^{56}, Pb^{207}) \Rightarrow$ vastly complicates description of ν reactions ...

- Impacts kinematics/rates and observed final states
- Nuclear effects studied extensively in DIS using μ, e⁻ beams, but have only been glanced at in low statistics ν experiments:
 - Gargamelle, SKAT(C₃H₈ CF₃Br) ← Serpukov (Al spark chamber)← FNAL (Ne) ← CHARM, CHARM II (marble, glass)
- \bullet but they typically publish free nucleon σ

Early σ_{ν} Measurements

- Low $E (\sim 1-10 \text{ GeV}) \sigma_{\nu}$ meas come from early experiments at ANL, BNL, CERN, and FNAL
- bubble chamber experiments

Gargamelle at CERN

- simplest exclusive states measured
- considerable errors due to:
 - \hookrightarrow low statistics
 - \hookrightarrow imprecise knowledge of incoming ν flux
- in addition to large errors, results are often conflicting
- even ignored by PDG $(\sigma_
 u$ removed after 1996)

Contrast: in 30–200 GeV range, high statistics data from variety of experiments (NuTeV, CCFR, CHARM, CDHS) (B. Bernstein talk on NuTeV σ WG2 6/9)

Past σ_{ν} Measurements

- How well have we measured low energy $\nu \sigma$'s? Rely on past measurements for this knowledge
- Along the way, point out how good our current theoretical understanding is
- Review the status of past measurements of σ_{ν} at $E_{\nu} \sim 1$ GeV:
 - \hookrightarrow Quasi–elastic scattering
 - $\hookrightarrow \text{Resonance production} \\ (\text{CC and NC single } \pi)$
 - \hookrightarrow Coherent π production
 - $\hookrightarrow \text{Multi } \pi \text{ production} \\ (\text{small } \sigma \text{ but can feed down})$
 - $\hookrightarrow \nu$ production of strange

Quasi Elastic Scattering

 $\nu_{\mu} n \to \mu^- p$

- Most well known cross section at low energies
- These processes have been studied with low energy (100 MeV – 10 GeV) bubble chambers experiments; most on light targets:

Experiment	Target Type	Reference
ANL	bubble chamber, D_2	Barish, PRD 16, 3103 (1977)
GGM	bubble chamber, propane–freon	Pohl, Nuovo Cimento 26, 332 (1979)
BNL	bubble chamber, D_2	Baker, PRD 23, 2499 (1981)
FNAL	bubble chamber, D_2	Kitagaki, PRD 28, 436 (1983)
Serpukhov	spark chamber, Al	Belikov, Z. Phys. A320, 625 (1985)
BEBC	bubble chamber, D_2	Allasia, Nucl. Phys. B343, 285 (1990)
SKAT	bubble chamber, CF_3Br	Ammosov, Sov.J.P.Nuc. 23, 283 (1992)

• Theoretical calculations for free nucleons all based on C.H. Llewellyn Smith, Phys. Rep. **3C**, 261 (1972)

$$< N'|J_{\mu}|N > = \overline{u}(N') \left[\gamma_{\mu}F'_{V}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}\xi F_{V}^{2}(q^{2})}{2M} + \gamma_{5}\gamma_{\mu}F_{A}(q^{2}) \right] u(N)$$

$$F_{V}(q^{2}) \sim \frac{1}{(1-q^{2}/M_{V}^{2})^{2}} \quad F_{A}(q^{2}) = \frac{F_{A}(0)}{(1-q^{2}/M_{A}^{2})^{2}}$$

• Form factors depend on M_V , $F_A(0)$, M_A

Quasi-Elastic Cross Section

Existing QE σ measurements were made ~ 20 years ago and have limited precision:

 \bullet largest contrib to exp'l error $15\!-\!20\%$ flux uncertainties

- No big surprise here Monte Carlo predictions agree (w/ consistent pars)
- apart from nuclear effects, theoretical uncertainty dominated by $M_A = 1.026 \pm 0.021$ GeV (world average)
- \bullet considerable spread in the QE σ data for any given E_{ν}

Quasi-Elastic Cross Section

Room for improvement ...

- Recent work by Bodek, Budd, and Arrington talk by C. Walter next
- input updated form factors $G_E^{n,p}(Q^2)$, $G_M^{n,p}(Q^2)$ from e^- scattering data
- largest effect $G_E^n(Q^2) \neq 0$

• with latest values, re–analyze u QE data for M_A

 ν data not yet updated from Bernard *et al.* hep-ph/0107088

Neutrino Resonance Production

 In addition, there are excitation of resonances and their subsequent decays:

$$\nu N \to l \ N^* \\ N^* \to \pi N'$$

• 7 possible channels (3 CC, 4 NC):

$\nu n \rightarrow \mu^{-} n \pi^{+}$	$ \nu_{\mu} p \rightarrow \nu_{\mu} n \pi^{+}$
$\nu_{\mu}p \rightarrow \mu^{-}p\pi$ $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$	$ u_\mu p \ o \ u_\mu p \pi^0$
$\nu_{\mu} n \rightarrow \mu^{-} n \pi^{0}$	$ u_\mu n \ o \ u_\mu n \ \pi^0$
$\nu_{\mu} n \rightarrow \mu p n$	$ u_{\mu} n \rightarrow \nu_{\mu} p \pi^{-}$

- Main contribution is from $\Delta(1232)$ (but others can contribute)
- ν Monte Carlos covering this kinematic region have been using early theoretical predictions by Rein–Sehgal Rein and Sehgal, Annals Phys 133, 79 (1981)
- Feynman, Kislinger, Ravndal model of baryon resonances (to account for higher mass resonant states)
 Feynman, Kislinger, Ravndal, Phys. Rev. D3, 2706 (1971)
- Contributions from 16–18 baryonic resonances (N^*, Δ)
- Recent calcs on nuclear effects (π absorption, CE) Paschos, Nucl. Phys. **B588**, 263 (2000)

Quality and quantity of data varies ...

CC Single Pion Production

NC Single Pion Production

- NC amplitudes obtained by simply rescaling form factors by terms depending on $\sin^2 \theta_W$
- Most of available data on NC single π production exists in the form of NC/CC cross section ratios
- NC single π data more sketchy than CC case

In some cases, measurements can differ by factors 2–3 (experiments needed to understand neutron backgrounds)

Absolute NC 1π Cross Sections

- re-analysis of Gargamelle 1970's bubble chamber data
- using published Φ, σ at < E_ν >= 2.2 GeV
 (E. Hawker with help from Morfin, Pohl shown at NuInt02)

New data from K2K, MiniBooNE can certainly help!

Coherent Pion Production

- Scatter from entire nucleus rather than from its individual constituents
- Both NC and CC processes possible:

 $\nu_{\mu} A \to \nu_{\mu} A \pi^{0}$ $\nu_{\mu} A \to \mu^{-} A \pi^{+}$

- Distinct kinematics
 - \hookrightarrow negligible energy transfer to the target (low Q^2)
 - \hookrightarrow forward scattered π
- Kinematics well known, but overall rate less certain (exps typically assign a 100% uncertainty)
- Theoretical model based on Adler's PCAC theorem $\sigma(\nu A) \propto \sigma(\pi A)$ as $Q^2 \to 0$

$$\frac{d^3\sigma}{dQ^2d\nu dt}(\nu A,Q^2=0) = \frac{G_F^2}{2\pi^2\nu}\cdot\frac{E_\mu}{E_\nu}\cdot f_\pi^2\cdot\frac{d\sigma}{dt}(\pi A)$$

• Extrapolation to $Q^2 \neq 0$ through propagator term: Rein-Sehgal, Nucl. Phys. B223, 29 (1983)

$$\frac{d^3\sigma}{dQ^2d\nu dt} \cdot \left(\frac{M_A^2}{M_A^2 + Q^2}\right)^2, \ M_A \sim 1 - 1.35 \,\text{GeV}$$

- Lowest energy data is at 2 GeV off Al target
- Possible to measure at K2K 1kton and at MiniBooNE? $< E_{\nu} > \sim 1 \text{ GeV}$
 - \hookrightarrow important since $\sim 20\%$ of single π^0 rate
 - \hookrightarrow impacts limits on osc of standard ν 's to sterile states

Multi Pion Production

Single Kaon Production

• Atmospheric ν 's pose an important background for nucleon decay searches

 $p \rightarrow K^+ \nu$ (preferred in SUSY GUTs)

• Finite probability that a ν int can mimic a proton decay event, since $>800~{\rm MeV}~\nu$ production of strange:

СС	NC
$\nu_{\mu} n \to \mu^- K^+ \Lambda^0$	$\nu_{\mu} p \to \nu_{\mu} K^+ \Lambda^0$
	$\nu_{\mu} n \to \nu_{\mu} K^0 \Lambda^0$
$\nu_{\mu} p \to \mu^- K^+ p$	
$\nu_{\mu} n \to \mu^{-} K^{0} p$	
$\nu_{\mu} n \to \mu^- K^+ n$	
$\nu_{\mu} p \to \mu^- K^+ \Sigma^+$	$\nu_{\mu} p \to \nu_{\mu} K^+ \Sigma^0$
$\nu_{\mu} n \to \mu^- K^+ \Sigma^0$	$\nu_{\mu} p \rightarrow \nu_{\mu} K^0 \Sigma^+$
$\nu_{\mu} n \to \mu^- K^0 \Sigma^+$	$\nu_{\mu} n \to \nu_{\mu} K^0 \Sigma^0$
	$\nu_{\mu} n \to \nu_{\mu} K^+ \Sigma^-$

 \Rightarrow important to reliably estimate this background

- Little experimental data most from bubble chambers where strange particle decays easily observed
- Few theoretical models: (not very predictive)
 - \hookrightarrow R. Shrock, Phys. Rev. **D12**, 2049 (1975)
 - \hookrightarrow A. A. Amer, Phys. Rev. **D18**, 2290 (1978)

 $\nu_{\mu} n \rightarrow \mu^{-} K^{+} \Lambda^{0}$ dominant channel at low energies (and hence the limiting background)

CC Associated Production of $K^+\Lambda$

$$\nu_{\mu} n \to \mu^- K^+ \Lambda$$

Experimental measurements based on handfuls of events

- BNL 7ft, D_2 , 8 evts
- FNAL 15ft, D_2 , 21 evts

Data on these reactions is scarce particularly at E's near threshold which are relevant for proton decay searches

- Models use same framework as single π (Rein–Sehgal) (add additional resonance decays other than Nπ)
- Ability to measure strange production rates in ν ints will play important role in helping p decay exps reach their ultimate sensitivity
 - → Measure at MiniBooNE (expect 100's of events)
 - \hookrightarrow Plans to measure using K2K new near detector (SciBar)

Total CC ν Cross Sections

Monte Carlos models can differ in how sum various σ contributions to form total

- quasi–elastic scattering
- CC single pion
- NC single pion
- coherent pion
- dipion channels
- associated strangeness production
- total cross sections \rightarrow

Model comparisons have turned up interesting differences

ν Cross Section Score Card

Cross	Present		Theor.
Section	Knowledge	u Data	Models
DIS	Excellent $\star \star \star \star$	many exps	parton model
Quasi-Elastic	Good $\star \star \star$	bc	form factors
Resonant 1π	Fair ★★	bc	Rein–Sehgal
Coherent π	Poor (low E) $\star 1/2$	bc, counter	several
Combining σ 's	Poor *	little	several +
Nuclear Targets	Poor $\star 1/2$	very limited	variety

Present Experimental Handles

Will this situation be improved in the near future?

- K2K near detector: H_2O Čerenkov, SciFi, MRD
 - \hookrightarrow started taking data June '99
 - $\hookrightarrow < E_{\nu} > \sim 1.3 \text{ GeV}$, 12 GeV p from KEK

- \hookrightarrow NC π^0 yield in H₂O Č
- \hookrightarrow non–QE/QE ratio in FGD
- \hookrightarrow new SciBar
- \hookrightarrow M. Shiozawa plenary 6/5
- MiniBooNE: CH₂ Čerenkov
 - \hookrightarrow started taking data late Aug '02
 - $\hookrightarrow < E_{\nu} > \sim 1 \text{ GeV},$ 8 GeV *p* from FNAL Booster
 - \hookrightarrow 100,000 u events collected
 - ($\sim 10\%$ of total data sample)
 - \hookrightarrow first physics results this Fall (NC π^0 , QE, NC elastic)
 - \hookrightarrow B. Louis and C. Moore talks

Both data sets putting present Monte Carlo models to the test

Future Experimental Handles

Future proposals for fully active, highly segmented ν detectors

• FINeSE - FNAL Booster beamline

- ightarrow same ν source as MiniBooNE < $E_{\nu} > \sim 1 \text{ GeV}$
- $\hookrightarrow \Delta s$, precise measurements of NC, CC σ_{ν} (10–100k samples)
- ← EOI submitted to FNAL PAC Nov 2002 (B. Fleming, R. Tayloe)
- \hookrightarrow (R. Tayloe talk in WG2 6/9)

MINerVA - FNAL NuMI beamline

- \hookrightarrow precision σ measurements (high stats, $\sim 3\%$ flux syst)
- $\hookrightarrow \text{ selection of nuclear targets } \Rightarrow \\ \text{ study of nuclear effects w} / \nu\text{'s}$
- ← EOI submitted to FNAL PAC Nov 2002 (K. McFarland, J. Morfin)

See K. McFarland's talk later in this session ...

Testing ν Cross Section Models

- compare against previous ν measurements ... re-analyze old ν data
 - \hookrightarrow NC 1π absolute σ 's
 - \hookrightarrow new M_A fits to QE, 1π
- ν–nucleus models can be tested against (more precise)
 e⁻ scattering data
 - \hookrightarrow can gain valuable information from (e, e') scattering
 - \hookrightarrow high statistics e^- data exists on a variety of relevant targets (C^{12} , O^{16} , etc.)
 - \hookrightarrow can gain insight into meeting of QE, RES regions
 - \hookrightarrow checks Fermi gas model parameters (E_B , p_F)

O'Connell, PRL 53, 1627 (1984), 730 MeV e^- on ${}^{12}C$, 37.1°

See talk by Chris Walter next ...

Where We've Been and Where We We're Headed

Past Measurements (bubble chambers) low E - low statistics - 15–20% flux uncertainties $-\sigma_V$????? Neutrino Factory ?JHF???? Superbeams

> Future σ_{v} Experiments

 high granularity detectors
 NuMI FINeSE DIS larger, denser targets high E – higher statistics – probe nucleon structure

> Present v Oscillations

 more intense low E beams

σ_V K2K MiniBooNE

pstorage rings?(FNAL debuncher, CERN decelerator)

Stay Up to Date on Low E Neutrino Interaction Progress

• Nulnt workshops!

- \hookrightarrow brings together nuclear and particle physicists to discuss issues related to our understanding of low E neutrino cross sections
- \hookrightarrow best way to stay in tune

NuInt02 - U. California Irvine (Dec 2002) Second International Workshop on Neutrino–Nucleus Interactions in the Few–GeV Region

Conclusions

- Interest in low $E~\nu$ processes has increased following compelling indications of neutrino oscillations
- Several new experiments are now being planned or under construction aimed at determining oscillation parameters with high precision
 - → will be even more sensitive to sources of systematic uncertainties
 - \hookrightarrow among them: σ_{ν} , nuclear effects, FSI
- Although we have been using accelerator based ν beams for over 30 years there is still a surprisingly large amount we don't know about ν interactions at low energy
 - \hookrightarrow lack of high statistics low energy ν data
 - \star results often conflicting
 - \star little u data on nuclear targets
 - \star still valuable, but situation could be improved
- Lack of understanding may haunt next generation exps
- Look forward to improved σ_ν measurements (K2K, MiniBooNE,...,FINeSE, MINerVA,..., ν Factory)
 - ... to help ν oscillation experiments reach their maximum discovery potential ...