Low Energy Neutrino-Nucleus Interactions

Chris Walter (BU) in collaboration with M. Sakuda and K .McConnel. 10 June 2003 @ NuFact03

Outline

- 1. Neutrino-Nucleus Interactions in Oscillation experiments.
- 2. Nuclear effects
- 3. Fitting the axial mass.
- 4. Recent Progress in Calculation (NuInt01/02)
 - Elastic Form Factors
 - Spectral Function = Beyond Fermi Gas
 - Nuclear PDF
 - Deep Inelastic Scattering
- 5. Conclusions

Reminder: Cross Sections~1 GeV

NuFact03 M. Sakuda/C.W. Walter

A Concrete example: E, Reconstruction (assuming QE)

In a Quasi-Elastic reaction, even if <u>only the muon</u> is visible we can reconstruct the neutrino energy.

If the interaction is non Quasi-Elastic then the reconstructed energy will be incorrect.

Non-QE interactions and E_{y} Reconstruction

Example: K2K Flux MC

Pauli Exclusion Effect

Nuclear effects are large in the low Q² region, where the cross section is large.

do/dQ² (quasi-elastic scattering)

NuFact03 M. Sakuda/C.W. Walter

Flux independent ratio $\sigma(\text{single }\pi)/\sigma(\text{QE})$: The BNL data still exists and can be reanalyzed: Furuno@nuint02

NuFact03 M. Sakuda/C.W. Walter

$M_A(1\pi)$ fit using $\sigma_{1\pi}/\sigma_{QE}$ ratio

 $\sigma(v_{\mu}p \rightarrow \mu^{-}p\pi^{+})/\sigma QE(1.07)$ and BNL data

- For M_A(1π):
 - Fit value of 1.15 +.08-.06
 - X²=9.88 d.o.f=9 (X²/d.o.f=1.10)
 - Error on M_A(QE) included in fit
 - consistent with the K2K M_A value of 1.2

$M_A(1\pi)$ fit using $d\sigma_{1\pi}/dQ^2$ shape

- For M_A(1π):
 - Same data, different format
 - Fit for Q² > 0.2 only
 - Fit value of 1.08 +/-.07 (stat.)
 - X² = 63.1 d.o.f=65 (X²/d.o.f=.971)

3. Recent Progress in Calculation (NuInt01/02)

- Elastic Form Factors
- Spectral Function = Beyond Fermi Gas
- Deep Inelastic Scattering
- Nuclear PDFs

Neutrino Interactions

From EM Scattering:

$$G_{EP}(Q^{2}=0) = 1 \qquad G_{EN}(Q^{2}=0) = 0$$

$$G_{MP}(Q^{2}=0) = 2.79 \qquad G_{MN}(Q^{2}=0) = -1.91$$

$$G_{E}^{P}(Q^{2}) = \frac{G_{M}^{P}(Q^{2})}{2.79} = \frac{G_{M}^{n}(Q^{2})}{-1.91} = G^{dipole}(Q^{2}) = \left(1 + \frac{Q^{2}}{0.71(GeV/c)^{2}}\right)^{-2}$$

Charged Current

$$\begin{split} J_{\alpha}^{1+i2} &= V_{\alpha}^{1+i2} - A_{\alpha}^{1+i2} \\ &< p(p') | J_{\alpha}^{CC} | n(p) \rangle = < p(p') | V_{\alpha}^{1+i2} - A_{\alpha}^{1+i2} | n(p) \rangle \\ &< p(p') | V_{\alpha}^{1+i2} | n(p) \rangle = \bar{u}(p') \Big[\gamma_{\alpha} F_{1}^{V}(Q^{2}) + \frac{i}{2M} \sigma_{\alpha\beta} q^{\beta} F_{2}^{V}(Q^{2}) \Big] u(p) \\ &< p(p') | A_{\alpha}^{1+i2} | n(p) \rangle = \bar{u}(p') \Big[\gamma_{\alpha} \gamma_{5} F_{A}(Q^{2}) + q_{\alpha} F_{p}(Q^{2}) \Big] u(p) \\ &F_{A}(Q^{2}) = \frac{F_{A}(0)}{(1+Q^{2}/M_{A}^{2})^{2}} , with F_{A}(0) = -1.2617 \pm 0.0035 \\ &F_{p}(Q^{2}) = \frac{2MF_{A}(Q^{2})}{m_{\pi}^{2} + Q^{2}} \end{split}$$

NuFact03 M. Sakuda/C.W. Walter

Quasi-Elastic Cross Section

$$\frac{d\sigma_{QE}}{dQ^{2}} = \frac{M^{2}G^{2}\cos(\theta_{c})}{8\pi E_{v}^{2}} \Big[A(Q^{2}) - B(Q^{2})(s-u) + C(Q^{2})(s-u)^{2} \Big]$$

- $A=4(m^2/4M^2 + \tau)[(1+\tau)|F_A|^2 (1-\tau)|F_1|^2 + \tau(1-\tau)|\xi F_2|^2 + 4\tau\xi ReF_1F_2] m^2/4M^2$ $(|F_1^v + \xi F_2^v|^2 + |F_A + 2F_p|^2 - 4(1+\tau)F_p^2)]$
- **B**=-4 τ Re**F**_A^{*}(**F**^V₁+**\xiF**^V₂)
- C=4($|F_A|^2 + |F_1|^2 + \tau |\xi F_2|^2$)

Where $(s-u)=4ME_{v}-Q^{2}-M_{\mu}$, $\tau = Q^{2}/4M^{2}$, $\xi = u_{p}-u_{n}$

 F_p is the pseudo scalar form factor, and F_A is the axial vector form factor.

- The vector form factors:
 - $F_{1}^{\vee} = (G_{Ep} G_{En} \tau(G_{Mp} G_{Mn}))/(1 + \tau)$
 - $\xi F_2^{\vee} = (G_{Mp} G_{Mn} G_{Ep} + G_{En})/(1+\tau)$

Nucleon Vector Form Factors

- The simple dipole fit is only good to ~10-20%
- New SLAC/JLAB e-p/e-D data shows that vector form factors must be updated
- New parameters from P.E. Bosted, <u>"Empirical fit to nucleon electromagnetic form factors, Phys Rev C, V 51, 409, '95</u> (Also E.J.Brash et al, PRC65,051001,2002)

Form Factor OldNew

NuFact03 M. Sakuda/C.W. Walter

$d\sigma/dQ^2$ vs. Q^2 with new Vector Form Factors $G_{Mn}, G_{Mp}, G_{Ep}, G_{EN}$

- New cross section is smaller at low Q^2 , and larger at higher Q^2
- ~5% overall difference in $d\sigma_{QE}/dQ^2$
- F_p is a < 1 % difference, G_{En} is ~2% difference, both largest at low Q^2
- Changes M_A fit value by .05

NuFact03 M. Sakuda/C.W. Walter

$\sigma_{\rm QE}$ vs. E, with new Vector Form Factors $G_{\rm Mn}, G_{\rm Mp}, G_{\rm Ep}, G_{\rm EN}$

NuFact03 M. Sakuda/C.W. Walter

New $d\sigma_{QE}/dQ^2$ shape fit for $M_A(QE)$

For $M_A(QE)$:

- fit at different energies to BNL
 Q² distribution; only Q² > 0.2
- Old code best fit: M_A(QE) = 1.05 ± .06, consistent with BNL result of 1.07 ± .05
- New code best fit:
 M_A(QE)=1.0 ± .05
- shift of .05 in M_A(QE) expected from ~5% change in model.

Fit to BNL Q²(QE) distributions

Models beyond the Fermi-gas model

Spectral Function Calculation or Local Density Approximation (Pandharipande@nuint01, Benhar, Nakamura, Gallagher@nuint02)

Spectral Functions $P(\mathbf{p}, E)$ for various nuclei, eg.¹⁶O, are estimated by Benhar et al. using e-N data.

P(p,E): Probability that the target nucleon has momentum p and binding energy E.

NuFact03 M. Sakuda/C.W. Walter

Lepton energy in quasi-elastic v-N interaction

-Comparison of Fermi Gas model and Spectral Function Calculation-

- Spectral function gives high energy tail.
- Shift at a level of 10 MeV may exist.
- <ε_B>=25 MeV
 (Fermi-Gas)
- <E>_{LDA}=40 MeV

Benhar, Gallagher, Nakamura@nuint02

Using e-N scattering data to validate models

- There is a lot of e-scattering data available.
- By choosing a fixed energy and scattering angle we are probing a fixed Q transfer. This is sensitive to both the binding energy(V_b) and fermi-momentum (K_f).
- We can compare this to our neutrino MC generated at fixed Q.

NuFact03 M. Sakuda/C.W. Walter

Test of neutrino models using (e,e') Data (\cdot).

The energy transfer ($\omega\text{=}\text{Ee-Ee'}$) at the fixed scattering angle .

Ee'

Nuance vs. e-scattering data

- Nuance uses a Smith-Moniz relativistic Fermi-Gas Model
- The paramaters can be tuned to make the peak/width agree

DIS (Bodek-Yang at NuInt01/02)

$$F_2(x) = \sum_i e_i^2 \left(xq(x) + x\overline{q_i(x)} \right)$$
$$F_2(x) = \frac{Q^2}{Q^2 + 0.188} F_2(x_w)$$

where
$$x_{w} = x(Q^{2} + 0.624)/(Q^{2} + 1.735x)$$
.

Dashed: GRV94 Red:Bodek-Yang This correction is significant at low Q2 region. NB. Three resonances are evident.

0.4 0.2 0.8 0.1 O. 0.02 0.03 0.0 0.05 0.07 0.10 0.20 0.50 0.1 0.2 0.3 0.4 0.5 0.6 $x [Q^2 = 0.07]$ $x [Q^2 = 0.22]$ SLAC герпелес (Kappel+Stuar 0.3 Lab F2(LO.GRV04) Z(LO+HT:GEV94 0.9 s.o 0.1 Q.3 0.0 └─ 0.1 0.0 0.8 0 x [Q⁸=1.4] 0.2 0.3 0.4 0.0 0.8 0.7 0.40.8 1.0 $x [Q^8 = 0.85]$ 0.16 0.0100 0.0050 0.10 0.0010 0.0006 0.05 0.0001 0.70 0.75 0.80 0.85 0.90 0.95 1.00 x [Q²=0] 0.00 0.4 0.6 **B.**0 1.0 $x [Q^8 = 3]$ 10 10-3 10^{-4} 10-5 0.80 0.66 0.860 0.875 0.900 0.825 0.850 0.976 1.000 0.90 0.65 1.00 $\times [Q^{P}=16]$ $x [Q^2 = 26]$

SLAC/Jlab resonance data (not used in the fit)

Nuclear PDF and its effect on the DIS cross section

Summary

- The accuracy of Neutrino-Nucleus (v-N) interactions at Ev=0.1-10 GeV is still poor, about 10-20% in cross section measurements and distributions.
- We will combine both e-N data and v-N data to understand v-N interactions better. Re-analysis of old data (BNL,ANL) using current formalism is still valuable.
- Old nucleon form factors are now being updated. It has +-5% effect on Q² distribution and 2-3% on the cross section.
- Spectral function calculation which improves the old Fermi-gas model calculation is extensively studied.
- Transition between DIS and resonance region is complex. Bodek's calculation is the first trial.
- K2K near detectors (1kton/SciFi): producing new data.
 BooNE: soon. K2K upgraded detector (SciBar) will be complete this summer. MINOS near detector and ICARUS will come into operation in 2005/2006.
- All these studies will become a step toward precision neutrino experiments.