Induction Linac II

Relevant modifications

1. 2.5 Hz
 6 bunches ~ 20 ms spacing

 \[\Rightarrow \text{single pulse machine} \]

 \[\Rightarrow \text{re-optimization of cores (higher DB and/or lower cost material) (2605 SC) may be possible} \]
IL1
100 m
1.4 MV/m

[Graph: 1.4 MV
125 ns]

IL2
80 m
-1.1 to 1.03 MV/m

[Graph: 1
350 ns]

1. Lower gradient
 - better axial packing

2. Primarily single polarity
 - easier pulser

1. Longer pulse length
 - increased volt-sec
 - reduced dB/s
 (reduced loss)

2. Should revisit optimal architecture
 (single pulse) to generate ± polarity
2 MV, 4 Pulse Pulsed Power Layout

MCPC Module

Cell Cables

H₂O Delay Line

4 Series PFLs

SCR Switched Prime Power
4 Pulse Pulsed Power System
4 Series PFLs

- Switches LS1-LS4 are Saturable Reactors based on SLIA Rep Output Reactor design
- Each PFL
 8.21 nF, 0.56 kJ
 8.0" OD x 6.1' long

- MCPC design based on LLNL MAG1D
- IES Stage compressor replaces thyatron switched feed to MAG1D
- 20 μs charge time allows use of SCR switching for high reliability

17-May-00

MuonR&D_Catalina_17May00.ppt
Keep same cell architecture

A Pair of 1 m Long Induction Cells

Finemet cores Superconducting Solenoid Mycalex Insulator Induction Gap
MLON PHASE ROTATOR

- Revisit 260550 option; possibly higher DB used
- Need to watch out for total power consumption
Re-optimize cell / pulse power balance

Induction Module Core Design

- Requirements => Size
 - 20 cm bore radius & 25 cm for B_z magnet & Insulator => Core IR = 45 cm
 - 90% axial packing & allowable electric field stress => $L = 100$ cm
 - From $V \times \tau = \Delta B \times A$
 - 2 MV hyperbolic ramp for 100 ns => $V\tau = 126$ mV-s
 - Balancing pulsed power & core cost => $\Delta B = 1.0$ T
 - $A = 0.13$ m², PF$_r = 0.70$, & PF$_a = 0.58$ => Core OR = 78 cm

<table>
<thead>
<tr>
<th>ΔV</th>
<th>V_{eff}</th>
<th>τ_r</th>
<th>τ_{flat}</th>
<th>τ_{eff}</th>
<th>$V\tau$</th>
<th>Type</th>
<th>δ</th>
<th>PF$_r$</th>
<th>ΔB_{max}</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>kV</td>
<td>kV</td>
<td>μs</td>
<td>μs</td>
<td>μs</td>
<td>mV-s</td>
<td>gm/cc</td>
<td>T</td>
<td>Norm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>142</td>
<td>0.070</td>
<td>0.030</td>
<td>0.07</td>
<td>12.6</td>
<td>Finemet</td>
<td>7.32</td>
<td>0.70</td>
<td>1.95</td>
<td>1.00</td>
</tr>
<tr>
<td>200</td>
<td>142</td>
<td>0.070</td>
<td>0.030</td>
<td>0.07</td>
<td>12.6</td>
<td>2605SC</td>
<td>7.32</td>
<td>0.70</td>
<td>2.90</td>
<td>0.36</td>
</tr>
<tr>
<td>200</td>
<td>142</td>
<td>0.070</td>
<td>0.030</td>
<td>0.07</td>
<td>12.6</td>
<td>2605SC</td>
<td>7.32</td>
<td>0.70</td>
<td>1.10</td>
<td>2.00</td>
</tr>
</tbody>
</table>

System ΔB

<table>
<thead>
<tr>
<th>ΔB</th>
<th>A_{Met}</th>
<th>A_{Core}</th>
<th>$\Delta B/\Delta t$</th>
<th>L</th>
<th>Δr</th>
<th>r_i</th>
<th>r_o</th>
<th>r_{mean}</th>
<th>H</th>
<th>I_{Core}</th>
<th>E_{Core}</th>
<th>k</th>
<th>U_{Met}</th>
<th>V_{Met}</th>
<th>W_{Met}</th>
<th>System ΔB</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>cm2</td>
<td>cm2</td>
<td>T/μs</td>
<td>"</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
<td>kA/m</td>
<td>kA</td>
<td>J</td>
<td>J/m3</td>
<td>cm3</td>
<td>kgm</td>
<td>Norm</td>
<td></td>
</tr>
<tr>
<td>0.97</td>
<td>130</td>
<td>185</td>
<td>13.2</td>
<td>2.28</td>
<td>5.8</td>
<td>32.0</td>
<td>45</td>
<td>77</td>
<td>1.71</td>
<td>61.0</td>
<td>31.5</td>
<td>107</td>
<td>634</td>
<td>49670</td>
<td>363.6</td>
<td>1.00</td>
</tr>
<tr>
<td>0.82</td>
<td>154</td>
<td>220</td>
<td>11.1</td>
<td>2.28</td>
<td>5.8</td>
<td>37.9</td>
<td>45</td>
<td>83</td>
<td>1.84</td>
<td>64.0</td>
<td>28.1</td>
<td>107</td>
<td>454</td>
<td>61744</td>
<td>452.0</td>
<td>1.02</td>
</tr>
<tr>
<td>1.48</td>
<td>85</td>
<td>122</td>
<td>20.1</td>
<td>2.28</td>
<td>5.8</td>
<td>21.0</td>
<td>45</td>
<td>66</td>
<td>1.47</td>
<td>55.5</td>
<td>42.9</td>
<td>107</td>
<td>1445</td>
<td>29688</td>
<td>217.3</td>
<td>1.07</td>
</tr>
<tr>
<td>0.82</td>
<td>154</td>
<td>220</td>
<td>11.1</td>
<td>2.28</td>
<td>5.8</td>
<td>38.0</td>
<td>45</td>
<td>83</td>
<td>1.84</td>
<td>64.0</td>
<td>39.4</td>
<td>282</td>
<td>801</td>
<td>61946</td>
<td>453.4</td>
<td>1.13</td>
</tr>
<tr>
<td>2.20</td>
<td>57</td>
<td>82</td>
<td>29.8</td>
<td>2.28</td>
<td>5.8</td>
<td>14.1</td>
<td>45</td>
<td>59</td>
<td>1.31</td>
<td>52.1</td>
<td>82.8</td>
<td>282</td>
<td>5571</td>
<td>18736</td>
<td>137.1</td>
<td>2.07</td>
</tr>
<tr>
<td>0.82</td>
<td>154</td>
<td>220</td>
<td>11.1</td>
<td>2.28</td>
<td>5.8</td>
<td>38.0</td>
<td>45</td>
<td>83</td>
<td>1.84</td>
<td>64.0</td>
<td>15.0</td>
<td>41</td>
<td>306</td>
<td>61946</td>
<td>453.4</td>
<td>1.35</td>
</tr>
<tr>
<td>0.86</td>
<td>147</td>
<td>209</td>
<td>11.7</td>
<td>2.28</td>
<td>5.8</td>
<td>36.1</td>
<td>46</td>
<td>82</td>
<td>1.79</td>
<td>64.1</td>
<td>1.59</td>
<td>41</td>
<td>339</td>
<td>58981</td>
<td>431.7</td>
<td>1.33</td>
</tr>
</tbody>
</table>
Low level switching should be revisited

SCR Switched Pre-MCPC Power Conditioning

- SCR switches are used to ensure reliable
- 6 series 5SGT 40L4502 Gate turn-off Thyristors manufactured by ABB Semiconductors AG
- They discharge a 2.1 μF, 26 kV cap through a 38 μH inductor to feed the 1st stage of the MCPC in 20 μs
- Individual Thyristor parameters are:

<table>
<thead>
<tr>
<th></th>
<th>Rating</th>
<th>Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (kV)</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Irms (kA)</td>
<td>2.5</td>
<td>0.3</td>
</tr>
<tr>
<td>dl/dt (kA/μs)</td>
<td>0.71</td>
<td>0.71</td>
</tr>
</tbody>
</table>