

Feasibility Study II Enclosure and System Design

(Target Support Facility)

Phil Spampinato
Oak Ridge National Laboratory
(865) 576-5267
<spampinatop@ornl.gov>

January 29-31, 2001 Brookhaven National Laboratory

Outline

- Component lifetimes
- Target and decay channel magnet arrangement
- Design and interface issues
- Remote handling considerations
- Conclusions

Target Support Facility Design

The facility arrangement will be based on:

- handling highly activated, Hg contaminated components
- meeting the operating availability (10^7 s/y)
- incorporating sufficient shielding for personnel and the environment
- minimizing facility cost drivers

Component Lifetime Estimate

```
Fluence in target region: 2.55 \times 10^{14} \text{ p/s} \times 10^{-1} \text{ n/pot-cm}^2 \times 10^4 \text{ cm}^2/\text{m}^2 \times 70 \text{ Mgy/7} \times 10^{21} \text{ n/m}^2 \times 10^7 \text{ s/y} = 2.55 \times 10^{10} \text{ Gy/y} for Cu @ 10^{12} \text{ Gy}: 10^{12}/2.55 \times 10^{10} = 39 \text{ y} for steel structure @ 10^{11} \text{ Gy}: 3.9 \text{ y} Fluence @ 10^{-6} \text{ n/pot-cm}^2 (5 < Z < 18 \text{m}): 10^{10} \text{ Gy/2}.55 \times 10^{10} = 39,000 \text{ y}
```

Component Lifetime (cont,)

• Except for the Hg target equipment in the 20T solenoid, all components appear to be life-of-the facility

Component Life	e (yrs)
Hg Target Nozzle	< 1
Proton Beam Wind.	~ 1
HC Solenoids	>40
Beam Absorber	?
Low Field Solenoids	>40

Facility Design (cont.)

- target system config.
- Hg containment and recycling
- target/capture solenoids
- shielding for environment
- shielding for people
- remote handling

Target & Transition Region Solenoids (conductor only)

• Iron Plug 700 lbs

• HC 1-3 1300 lbs

• SC 1 17,100 lbs

- SC 2 8300 lbs
- SC 5 3300 lbs
- SC 7 450 lbs

Solenoids (cont.)

- The longest coil in the capture region is SC #12
 @ 260 cm
- Can SC #7-12 be combined into three or four longer coils?

The beam absorber may be combined with SC #6, and is located at 3 o'clock
@ Z=6 to 7m

Solenoids (cont.)

The decay region (Z = 18-48 m) contains 59 "small" coils that are
~ .5 m long

• Can they be consolidated into 10 coils?

Next Steps

- Confirm component lifetimes
- Calculate component weights/sizes
 - coil conductor + structure
 - W-C shield (target region)
 - steel shield (decay channel)??

- Develop integrated design
 - incorporate "final" coil configuration
 - add beam absorber
 - fix tunnel size
 - add Hg target system (feed, collection, storage, ...)
 - incorporate bio-shield
 - develop interface w/ PB window and induction linac
 - incorporate hot cell, cranes,RH equipment

Needed Information

- The target support facility requires several major design inputs
 - Hg target system concept (upsteam and downstream of Z=0)
 - who's doing the beam absorber concept design
 - interfaces w/ the proton beam and the induction linac

Conclusions

- Some of the major components are almost ready to be baselined (coils, shielding, building size, bio-shield, ...)
- The target support facility design is ready for ProEngineer modeling
- The target system conceptul design is needed
- The upstream and downstream interfaces need to be established

Feas. Study I Config.

