

Minicooling Absorber Design and Performance

Dan Kaplan, IIT

Study II Editors' Meeting BNL January 30, 2001

Outline:

- 1. Minicooling absorbers
- 2. Power dissipation and refrigeration cost
- 3. Heat transfer
- 4. Window design
- 5. Alternatives to LH_2
- 6. Conclusions

Minicooling:

• "Parameters version 2" calls for 2 minicooling absorbers preceded by beryllium plate (to absorb low-*E* protons):

Absorber	Mat'l	Length (cm)	Radius (cm)	Power Diss. (kW)
"0"	Be	1?	30	?
1	LH ₂	175	30	≈5.5
2	LH ₂	175	30	?

• H. Kirk simulation results (from 12/18/00 video meeting):

ICOOL Simulation Results

Induction Linac Phase Rotation Power dissipated in 1st mini-cool LH cell

Positive muon collection

	Power, KW				
	е	μ	π	к	р
positives	0.42	2.02	0.14	0	0.86
negatives	0.43	1.29	0.24	0	-

Total Power dissipated = 5.4 KW

Negative muon collection

Power, KW

	е	μ	π	К	р
positives	0.42	1.45	0.19	0	0.94
negatives	0.45	1.90	0.14	0	-

Total Power dissipated = 5.5 KW

Refrigeration Costs:

- 15' bubble chamber had 6.7-kW refrigerator (J. Kilmer)
- 5.5-kW refrigerator:
 - capital cost:

>\$1M (J. Kilmer, FNAL) ≈\$1.7M (M. A. Green, LBNL) ≈\$2.5M (B. Norris, FNAL)

– operating cost:

Green: 5.5 kW at 20 K $\rightarrow \approx 660$ kW at room temp

[cf. Kilmer: 15' bubble chamber required

400 hp (cooling) + 50 hp (vacuum)] 336 kW

 \Rightarrow operating cost @10¢/kWh: \approx \$130k/yr (Green)

Heat Transfer:

• Peak dissipation much higher than average:

 \Rightarrow Need to assure adequate heat transfer from core to periphery

Don't know how to do this yet! Note that power/cm at upstream end is >10 × that proposed for SLAC E158, but power/cm³ is $<10^{-2} \times E158$

 \Rightarrow Probably feasible

Window Thickness:

• Assuming operation at 1.2 atm, hemispherical Al-alloy windows, and "canonical" safety factor of 4,

 $t \approx 2 PR/S \approx 2 \times 0.12 \text{ MPa} \times 0.3 \text{ m} / 300 \text{ MPa} \approx 240 \mu\text{m}$

(Determination of exact thickness awaits detailed design and finite-element analysis)

 \Rightarrow Given 175 cm of LH₂ per absorber, this is unlikely to affect the beam significantly

Simpler Alternatives?

- Does it make sense to operate two "15' bubble chamber equivalents' for this purpose?
 - \rightarrow While capital and operating costs not show-stoppers, may want to minimize operational effort/safety concerns & maximize reliability
 - ⇒ Why not minicool with water, liquid methane, solid lithium, or beryllium?

 \rightarrow Licosts \approx 5% in μ/p , Be \approx 10%

- could raise *B* field to compensate?

Material Comparison:

Mat'l	Δ <i>E</i> _min (MeV)	Length (cm)	%X ₀
LH ₂	50	175	20
LiH	50	38	35
Li	50	57	37
CH ₄	50	49	45
Be	50	17	48
H ₂ O	50	25	70

- Comments:
 - 1. Liquid methane somewhat better than beryllium?
 - 2. Liquids should give easier power handling by circulation
 - 3. Solids require liquid-cooling \rightarrow perimeter cooling sufficient, or some water needed in beam region?

Heat Transfer Guestimate:

• Approximate as 2D problem with heat applied in small inner core:

 $\Delta T \approx P/(2\pi kL) \ln(r_o/r_i)$

```
(Neglect T dependence of k)
```

 $k \approx 70 \, W/m \cdot K(Li)$

 $200 \,\mathrm{W/m} \cdot \mathrm{K(Be)}$

say $P/L \approx 55 \, W/cm$ (conservative)

 $r_o/r_i \approx 5$ (conservative?)

 $\rightarrow \Delta T \approx 20 \mathrm{K} (\mathrm{Li})$

 $\approx 7 \mathrm{K} \mathrm{(Be)}$

 \Rightarrow Water-cooling around perimeter probably sufficient

Conclusions:

- 1. LH₂ minicooling appears feasible and affordable
- 2. LH₂ minicooling complicated and hazardous
 - will probably diminish facility reliability
- 3. Understanding heat transfer in LH₂ requires more study
- 4. Should consider alternatives (in future study?):
 - Li, LiH, CH₄, Be