

Neutrino Factory and Muon Collider Collaboration

R&D Program: Progress and Plans

Michael S. Zisman

CENTER FOR BEAM PHYSICS

Muon Collaboration Project Manager

Gilman Subpanel "White Paper" Writing Group Meeting–UCLA July 19, 2000

- Introduction
- Collaboration R&D goals
- R&D progress
- R&D plans
- R&D budget
- R&D schedule
- Summary

- Since last year, MC effort has focused primarily on Neutrino Factory R&D topics
 - Muon Collider issues have not been (and should not be) forgotten
 - emittance exchange workshop scheduled at BNL in September
- Change in emphasis did have one R&D implication
 - initial MUCOOL development based on 805-MHz components (RF cavity, power supply, solenoid)
 - work continued to learn about high-gradient performance in the presence of solenoid field
 - now need components sized for initial cooling channel parameters
 - 201 MHz RF cavity, power source, large-bore solenoid
 - R&D on these items is getting under way

Introduction

- Fermilab Feasibility Study taught us much about Neutrino Factory design
 - technical feasibility was established
 - a scientifically-productive staged approach to the facility is possible
 - a carbon target is viable for an entry level facility
 - front-end (capture, phase rotation, bunching, cooling) must be treated in integrated fashion
 - beam simulation work in Study-II is focusing on this
 - some components do not easily "scale" to 201-MHz dimensions
 - conventional wisdom says that solenoids are easy
 - solenoids with 1.5 m bore diameter and high field (\approx 3.5 T) are not
 - "cost drivers" were identified
 - R&D to produce cost-effective designs now included in the program

- MC has grown to 139 members from 30 institutions (+39 in past 6 months)
 - new NSF-sponsored University groups strengthening us further
 - both intellectually and financially
- We have the scientific personnel to carry out required R&D program in a timely way
- Committed to encouraging international cooperation and coordination for Neutrino Factory and Muon Collider R&D
 - expect to strengthen R&D ties between the various groups and avoid unnecessary duplication of effort
 - this is being encouraged from elsewhere also (Maiani letter)

• Participating institutions

Beam Simulations	MUCOOL	Targetry
ANL	ANL	ANL
BNL	BNL	BNL
CERN	Columbia U.	CERN
Fermilab	Fermilab	Fermilab
LBNL	Illinois Institute of Technology	LBNL
Michigan State U.	Indiana U.	Michigan State U.
Princeton U.	LBNL	National High Magnetic Field Lab
U. Chicago	National High Magnetic Field Lab	ORNL
UC-Berkeley	Northern Illinois U.	Princeton U.
UCLA	Northwestern U.	
	U. Mississippi	
	UCLA	

Acceleration/Storage Ring	Proton Driver	Phase Rotation
BNL	BNL	BNL
Cornell U.	Fermilab	Fermilab
Fermilab		LBNL
Jlab		
Michigan State U.		
UCLA		

Introduction

- *MC* recently reorganized to improve R&D planning and monitoring
 - added the role of Project Manager (PM)
 - PM has "line responsibility" for managing *MC* R&D program
 - MC member, appointed by—and reporting to—MCOG (with DOE-HEP concurrence)
- "Project" Office is being set up at LBNL

- Define where we want to be 5 years from now in all R&D areas, then work backward to see what's needed to get there (funding and effort)
- At the end of 5 years (science/technology-driven schedule)
 - all optics designs completed and self-consistent
 - validation experiments completed or well along
 - know what we want to build
 - know how to build "hard parts" (prototypes completed or designed)
 - ready to design and cost most components (\Rightarrow ready to begin CDR)
- Aim for "ZDR-level" understanding of a Neutrino Factory in \approx 3 years
- Aim to begin CDR after 5 years of R&D work (complete in ≈2 years)
 - implies "prying loose" significant engineering support early
- This aggressive schedule requires an augmented funding level

- R&D activities fall into four main categories
 - beam simulations/theory (Organizer: Jonathan Wurtele, UCB/LBNL)
 - targetry experiment (E951 at BNL) to demonstrate technical feasibility of key concepts (Organizer: Kirk McDonald, Princeton U.)
 - MUCOOL to demonstrate feasibility of required components and study cooling effects (Organizer: Steve Geer, Fermilab)
 - component development, e.g.,
 - 201-MHz SCRF cavities for acceleration section (Cornell)
 - induction linac with internal SC solenoid for phase rotation (LBNL)
 - 20 T SC solenoid system (NHMFL)
 - muon beam diagnostics (UCLA, U-Mississippi, Northwestern)
 - low-frequency, high-gradient proton driver cavity (Fermilab, BNL)
- Significant effort also invested in Feasibility Study activities, drawing other groups into the R&D program (FNAL \rightarrow BNL)

- Targetry goals
 - demonstrate performance of MW-level target in high-field solenoid
 - requires supporting target simulation effort
 - measure pion and neutron yields to benchmark code
 - demonstrate lifetime of target (Hg jet and solid)
- Progress
 - A3 beam line at BNL nearly completed
 - initial target beam tests begin next year
 - initial Hg-jet target apparatus built
 - test in high magnetic field at NHMFL
 - simulations to assess mechanical behavior of target under way
 - engineering of components for experiment [20-T pulsed solenoid, 70 MHz high-gradient RF cavity] has begun

• A3 beamline at BNL

• Prototype Hg target test apparatus

- MUCOOL goals
 - build component prototypes and bench test complete cooling cell
 - test cooling channel components (including diagnostics) in a muon beam...somewhere
- Progress
 - 805 MHz components
 - high-power open cell cavity fab nearly complete (high-gradient performance) [A. Moretti]
 - high-power Be-window pillbox cavity fab under way (multipactor; Be performance) [J. Corlett]
 - initial Be window deformation tests completed with encouraging results[D. Li]
 - solenoid for testing cavities completed and meets design specs [M. A. Green]

- 201 MHz components
 - design of high-power cavity suitable for cooling channel has begun [T. Jurgens]
 - Be windows and gridded cell being studied

- fabrication of prototype LH₂ absorber about to begin [D. Kaplan, M. Cummings]
 - design based on sophisticated thermal modeling

💳 Internal heat exchange:

- Beam simulation goals
 - complete end-to-end simulations, including effects of errors
 - Target/Capture, Front End, Acceleration, Storage Ring
 - develop concept for emittance exchange (longitudinal \rightarrow transverse)
 - develop analytical tools for understanding front-end performance
 - support MUCOOL demonstration design
- Progress
 - completed integrated front-end solution [C. Kim et al.]
 - still to be optimized in terms of performance
 - analytical tools developed [G. Penn; K.J. Kim]
 - emittance exchange workshop to be held at BNL in September [R. Fernow, G. Hanson]
 - acceleration scheme based on RLAs developed [V. Lebedev]

— simulation beginning from induction linac (175 MHz RF) (C. Kim)

Population within Phase Space Cuts

Lattice Properties:									
Peak Field on Axis Peak Field at Colls	3.4 T 12 T								
Current Density	132 A/mm2								
LH length	12.6 cm> 13.2 cm								
LH radius	15 cm> 10 cm								
AI wall thickness	400 μ> 200 μ								
Be window thickness	125 μ								
Be window radius	19 cm								
RF	175 MHz, 14 MV/m								
total transmission, 0.03 mu/p a	it 2100 mm mrad								
within 6000 mm mrad cut, 0.0	14 mu/p								
momentum cut. $0.15 < Pz < 0.25 GeV/c$									

comparison of simulation (points) with much faster analytical calculation shows good agreement (G. Penn)

- Component development goals
 - demonstrate high-gradient 201-MHz SCRF cavity (acceleration)
 - demonstrate induction linac cell with internal SC solenoid (phase rotation)
 - demonstrate realistic pulser system to drive it
 - demonstrate high-gradient, low frequency RF cavity for proton driver
 - identify and demonstrate other critical technologies
- Progress
 - design of 201-MHz SCRF cavity under way at Cornell (supported by NSF)
 - developing test cavity and inductive inserts for proton driver
 - initial concept developed for induction linac with internal solenoid focusing

V(13) 2 v(cell_pra4f

- Beam simulations
 - need better optimized upstream beamline to improve cooling channel performance
 - error sensitivity of cooling channel must be understood
 - solenoid strength and multipole errors; RF cavity V, ϕ , and HOMs; absorber variations; energy straggling, multiple scattering tails,...
 - only from these studies can we define
 - component specifications to compare with what we build
 - diagnostics that can measure what we need to control
 - the need for, and plans for, experimental tests of key issues

R&D Plans

- Targetry
 - E951 program is proceeding on schedule
 - first beam tests at BNL A3 line next year (Princeton, BNL)
 - neutron yield and pion yield measurements will be carried out subsequently (MSU *et al.*; Princeton, BNL)
 - develop target solenoid for E951 tests (NHMFL)
 - evaluate rad-hard materials and robust coil designs (MSU)
 - augment solid-target effort (FNAL, ORNL)
 - consider also "facility" issues (shielding, remote handling, radioactive storage)

- MUCOOL
 - carry out high-power tests on 805-MHz cavities (FNAL, LBNL)
 - see what limits gradient; study multipactor and Be window behavior
 - build prototype LH₂ absorber and test with beam (IIT et al., FNAL)
 - shift focus to 201-MHz development (FNAL, LBNL)
 - cavity design is under way (delivery and testing will take 3 years)
 - Be window design for large aperture cavity must be developed
 - design and fabricate solenoid to test cavity
 - Feasibility Study showed that this magnet is not easy
 - explore idea of initial testing with scale-model magnets
 - like NASA ("faster, cheaper, almost as good")
 - definition of demonstration awaits guidance from simulation effort

- Component development
 - SCRF cavity program getting under way at Cornell (NSF supported)
 - upgrade processing facilities; set up 201-MHz power source
 - explore cost-effective fabrication techniques
 - develop method to provide adequate mechanical stiffness
 - demonstrate high-power pulsed operation at design gradient
 - induction linac prototype development
 - verify gradient performance, pulser design, internal SC solenoid
 - engineering design of 201-MHz power source, e.g., multibeam klystron
 - begin consideration of "operational" diagnostics (ANL, U-Miss, UCLA, Princeton, Northwestern)
 - what is needed to transport beam, characterize beam, maintain beam properties during storage

- Proton driver (FNAL, BNL)
 - develop and test high-gradient pulsed RF cavity
 - demonstrate intense, short proton bunches (≈1 ns)
- Feasibility study
 - BNL and MC jointly carrying out study of "high-end" Neutrino Factory design
 - estimate performance and identify R&D needs and cost drivers, building upon previous Fermilab study

- Funding has been increasing
 - direct MC funds "leveraged"
 - sponsoring Labs cover physics staff costs

Year	DOE (\$M)	NSF (\$M)	TOTAL (\$M)
FY99	2.2		2.2
FY00	4.7	<mark>1.2</mark>	5.9

- additional funds contributed by Fermilab and BNL in support of feasibility study activities
- We hope for more support in FY01

- Summary of FY99 spending
 - note mix of institutions participating
 - note base program contribution of "matching funds"

	Collab	oration	Base Program	Overall				
Institution	Committed (\$K)	Uncommitted (\$K)	Committed (\$K)	Committed (\$K)				
ANL	150		100	250				
BNL	462.1	102.9	1264	1726.1				
FNAL [1]	834		965	1799				
LBNL [2]	274.2	115.3	123.3	397.5				
Princeton U.	90	40	135	225				
UC-Berkeley	50		125	175				
UCLA	60		47.9	107.9				
Mississippi	50		83	133				
TOTALS	1970.3	258.2	2843.2	4813.5				

NOTES:

[1] Includes \$124K carryover from FY98.

[2] Includes \$54.5K carryover from FY98 and \$50K uncommitted transferred from BNL.

• Representative details

Institution: Argonne National Laboratory

	Muon Collaboration Funds Laborato						aboratory Fund	Funds				
Task	Ef	fort (\$K)	Μ	&S (\$K)	S	um (\$K)	Effort (\$K)	M&S (\$K)	Sum (\$K)			
Targetry Studies												
Liquid Target Studies	\$	65.000	\$	5.000	\$	70.000						
Cooling Studies												
Lithium Lens							\$10.000		\$10.000			
Cavity X-rays								\$10.000	\$10.000			
Physics Salaries												
Cooling (Bent Solenoid, Cav. X-rays)	\$	75.000			\$	75.000	\$75.000		\$75.000			
Administration and Travel			\$	5 000	¢	5 000		\$5,000	\$5,000			
<u>Raministration and Traver</u>			Ψ	0.000	Ψ	5.000		ψ0.000	ψ0.000			
SUBTOTALS	\$	140.000	\$	10.000			\$85.000	\$15.000				
TOTALS					\$	150.000			\$100.000			

Representative accomplishments

Argonne National Laboratory (Accomplishments-FY1999)

- Developed theory of bent solenoid channel and identified specific aberrations and emittance growth mechanisms
- Explored methods of producing small emittance from low momentum muons in a lithium lens, with the aim of defining an optimum lens configuration
- Began measurements of the x-ray spectrum from an RF cavity to assess its effect on the diagnostics envisioned for the proposed FNAL muon cooling experiment
- Developed code for liquid metal magneto-hydrodynamics that is being used to predict heating, pressure, and mechanical deformation of a liquid-metal jet injected into a 20-T solenoid and heated by an intense proton beam
- Quantified slow (Joule) and fast (beam) pressure pulses in a liquid-lithium cell and carried out preliminary analysis of thermal, pressure, and mechanical response

• FY00 funding distribution (only DOE funds)

Institution	MUCOOL Expt. & Generic Studies	TARGETRY Expt.	SALARY	RESERVE	TOTAL (\$K)
BNL		1818			1818
FNAL	1229		90		1319
LBNL	438	75		15	528
ANL	25	80	200		305
IIT	157				157
Mississippi	68				68
Princeton	80	100	60		240
UCB			120		120
UCLA	50		80		130
TOTAL (\$K)	2047	2073	550	15	4685

- NSF has recently provided \$1.2M for muon-related R&D

• FY00 year-to-date summary (through April '00)

	Collab	ooration	Base Program	Overall			
Institution	Year To Date	Uncommitted	Year To Date	Year To Date			
	(\$K)	(\$K)	(\$K)	(\$K)			
ANL	230	75	0	230			
BNL	1028	790	1549	2577			
FNAL [1]	1162	157	1257	2419			
LBNL	211	317	126	337			
Princeton U. [2]	174	106	200	374			
UC-Berkeley	75	45	24	99			
UCLA	63	67	16	79			
Mississippi	50	18	83	133			
Cornell + NSF Contracts	0	1194	0	0			
TOTALS [3]	2993	1575	3255	6248			
	-	2768					
	NOTES						

[1] Includes \$157K IIT subcontract.

[2] Includes \$40K carryover from FY99.

[3] Additional NSF funding highlighted.

R&D Budget

- Budgets based on technology-limited schedule prepared (FY01–FY05)
 - FY01 (MC + base) is reasonably well defined; out-years less so

R&D area	FY01	FY02	FY03	FY04	FY05	Sum	Prior	Overall
	<u>(\$M)</u>							
MUCOOL	4.9	3.8	4.3	23.3	17.5	53.7	7.3	61.0
Targetry	5.7	5.2	4.4	3.7	2.1	21.1	4.1	25.2
Proton Driver	0.1	0.1	0.1	0.1	0.1	0.5	0.6	1.1
Beam Simulations	2.3	2.0	2.0	2.0	2.0	10.3	4.0	14.3
Acceleration/Storage Ring	0.9	0.6	0.6	0.6	0.6	3.1	0.5	3.6
Components	1.9	4.0	7.0	2.3	1.0	16.2	0.1	16.3
ZDR Preparation				10.0	10.0	20.0		20.0
TOTAL	16	16	18	42	33	125	17	142

— reaching the ZDR stage will require about \$66M (**\$50M in future funds**)

- At present funding levels, shortfall next year would be about \$5M
 - hope for NSF increase to get closer to what's needed, but this leaves no flexibility for alternatives (e.g., band targets) or collider work

- Preliminary R&D schedule based on technology-limited plan developed
 - not resource loaded yet, nor fully linked (plan and schedule will be iterated this summer)

	1999			2000			200	1		2002			200	3			200	4		2	2005			20
ID	Task Name	Q4	Q1	Q2 Q3	6 Q4	1 Q1	1 Q2	Q3 Q4	Q1	Q2 Q3 Q	4	Q1	Q2 (Q3 Q	4 Q	1 G	22 0	23 Q	4 (Q1 Q2	2 Q3	Q4	Q1	Q2
1	Neutrino Factory R&D		+																			_	•	
2	Ready for ZDR														ŧ١	Rea	dy fo	or ZDR	2					
3	Ready for CDR																		F	Ready	for CD	DR 🖣		
4	MUCOOL	1	+		-																		ł –	
5	805 MHz RF	1	÷—						•															
22	Liquid hydrogen absorber				1				-		+	,												
64	201 MHz RF			-											+									
73	Cooling demonstration							ļ	ý.		m								÷					
80	Targetry	1	+																				ł	
81	AGS extraction prep		-			† -																		
84	Liquid metal jet			-	-																		1	
106	AGS extraction upgrade				-														7					
111	Pulsed solenoid				•	+				-														
123	Hybrid magnet development					+-													-					
125	Solid target studies					+													+					
129	RF systems	1	÷—		1-														-					
157	Cavity solenoid				-					₹														
169	Capture experiment				1																		<u>۲</u>	
185	Simulation and validation	1	+								Ť	,												
198	Proton Driver					+																		
199	High-gradient RF																							
202	Inductive inserts					+					+	,												
205	Short bunch tests										4													
207	Beam simulations] '	+																			,		
215	Acceleration and storage ring	1 '	+												+									
219	Components	1		-																			ł	
237	Feasibility study II				1																			

R&D Schedule

R&D Schedule

- Focus here on three-year period (FY2001, FY2002, FY2003)
 - program components include
 - beam simulations
 - targetry
 - MUCOOL
 - proton driver
 - components
 - feasibility studies

- FY01 highlights
 - complete front-end simulations, including error sensitivity studies and multiple scattering and straggling issues
 - commission A3 beamline and carry out initial beam test of target (~6 weeks parasitic operation)
 - begin design of radiatively cooled solid target
 - complete target-solenoid design
 - high-power tests of 805-MHz open-cell and Be-window pillbox cavities
 - complete design of prototype LH₂ absorber
 - continue Be window development
 - fabricate 201-MHz SCRF cavity
 - conceptual design of induction linac with internal solenoid and pulser
 - complete feasibility study of high-end facility and prepare report on facility design and physics reach for Snowmass '01

- FY02 highlights
 - complete acceleration and storage ring simulation studies including errors and fringe fields
 - begin yield measurements to benchmark MARS (π , n)
 - construct prototype carbon target
 - test 70 MHz RF cavity in high-radiation environment
 - begin fabrication of high-power 201-MHz NCRF cavity and its test solenoid
 - complete LH₂ absorber tests with beam
 - test 201-MHz SCRF cavity (CW and pulsed)
 - design prototype high-power 201-MHz RF source
 - begin fabrication of induction linac module and pulser

- FY03 highlights
 - integrate simulations end-to-end (target to storage ring) with realistic errors and component specifications
 - test target with solenoid and RF cavity at 10¹⁴ ppp (~6 weeks parasitic beam)
 - complete pion yield tests (~6 weeks parasitic beam)
 - begin high-power tests of 201-MHz NCRF components
 - complete and test induction linac module
 - begin beam tests of diagnostics

- MC R&D program is vigorous and healthy
 - clear directions to proceed on all fronts
- Long-range planning to direct R&D program has been initiated
- *MC* membership and funding both growing at healthy rate
 - grass-roots effort of both high-energy and accelerator physicists
 - we have the manpower to carry out our program
- Involvement of NSF institutions (Universities ⇒ students) strengthens effort
 - involvement of international institutions and groups is also growing
- We must continue these positive trends
- HEPAP endorsement of MC R&D plan is critical to increasing financial support from Labs (base program) and funding agencies (DOE, NSF)
- At Snowmass '01 we will give detailed information to permit community to consider and evaluate the physics potential of a Neutrino Factory