

Study-II Cooling Channel Action List

Michael S. Zisman CENTER FOR BEAM PHYSICS

Muon Collaboration Project Manager

MUCOOL Phone Conference December 8, 2000

- Action list
- Summary

- Simulations (Lebrun)
 - reproduce Palmer's baseline case in GEANT4 [by January 8]
 - baseline is stepped Be foil windows
 - must run from target through cooling channel
 - is there a need to change field in decay channel?
 - identify any unresolved issues

- A few simulation issues that surfaced during the meeting are listed below
 - there is confusion on whether the emittance cut of 15 mm-rad is normalized or not (Lebrun thinks it's normalized)
 - Palmer used flat windows for the absorbers; this is unlikely to matter much, but Lebrun should start with this to reproduce the ICOOL results
 - Tollestrup has found a few errors in Palmer's parameter tables, and Fawley's program has been used at BNL to find a few glitches in the ICOOL input file; corrections expected next week
 - Wurtele suggested that particles from the cooling channel be passed on to the accelerator to make sure there are no interface errors; this is a good idea

- Absorbers (Black, Kaplan)
 - check initial minicool absorber power handling
 - use updated numbers from H. Kirk
 - consider solid Be plate upstream to range out protons
 - hope to complete this in December
 - check and validate all cooling channel absorber parameters
 - window shape, thickness, diameter, material, heat load
 - freeze parameters on January 8

- RF cavities [<u>Rimmer, Li, Moretti, Black, Green, Miller</u>]
 - confirm gradients and apertures and finalize parts count
 - define baseline cavity shape and window module design
 - estimate shunt impedance and power requirements
 - develop designs for input coupler and tuner
 - use common approach with SCRF if possible
 - examine FNAL design as backup
 - ${}_{\circ}$ preserve (but do not use) LN_2 cooling option
 - develop workable mechanical layout that handles vacuum, cooling, alignment, and repair/removal issues [needs <u>Black</u>, Miller, Green]
 - freeze mechanical layout on January 8

- thereafter, define alternative foil parameters that give same ΔT to do crude performance optimization
 - validate all cases with ANSYS

- Confirm all magnet parameters
 - target, decay and phase rotation, cooling
- Need designs for all cryostats by time of January meeting
- Split work between Miller and Green
 - Miller takes lead for target and cooling channel magnets
 - must settle target solenoid insert design by mid-January
 - Green leads decay channel, phase rotation (induction linac) and buncher magnet designs
 - need heat loads for upstream part of channel (from H. Kirk)

- cooling channel requires Miller-Green collaboration
 - o need close interaction with Rimmer and Black
 - must optimize adjacent coils in matching cells
 - must deal with off-normal forces (cryostat design)
 - must settle quench protection scheme
- Need written requirements/specifications finalized by January 8
 - need mechanical design concepts finalized by end of January (BNL meeting)

- Diagnostics (Norem)
 - need diagnostics information from Norem for baseline description
 - this must be given to Black for incorporating into the layout
 - first cut should be done by January 12

- We must begin to finalize parameters and layouts now
- This requires simulations being verified at FNAL for baseline case
 - and also that we do not lose focus now!
- With exception of minicool absorber, we should be able to freeze absorber parameters now
- RF design should proceed in parallel with simulation validation
 - design for stepped Be foils; leave flexibility for grid later
 - resolve mechanical conflicts with absorber design where possible, not with cavity or magnet design
- Cooling channel solenoid design should be based on passive mechanical protection from off-normal conditions
 - supports and cryostat must permit removal of an RF cavity and/or absorber
- Checking the interface between cooling and acceleration by sending particles all the way through should be done in January