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Outline
• Introduction
• “High-frequency” Buncher and φ−δΕ Rotation

• Concept
• 1-D simulations, 3-D simulations (ICOOL)
• Matched cooling channel

• Study 2A scenario
• Match to Palmer cooling section
• Obtains up to ~0.25 µ/p

• Variations
• Be absorber (or H2, or …)
• Shorter rotator (52m → 26m), fewer rf frequencies
• Short bunch train (< ~20m)
• Optimization ….
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Adiabatic buncher + Vernier φ−δΕ
Rotation

• Drift (90m)
• π→µ decay;

beam develops  φ−δΕ correlation

• Buncher (60m) (~333→200MHz)
• Forms beam into string of bunches

• φ−δΕ Rotation(~10m) (~200MHz)
• Lines bunches into equal energies

• Cooler(~100m long) (~200 MHz)
• fixed frequency transverse cooling system

µ−beam Drift  Buncher 

  φ−δΕ 
Rotator 

Cooler 

Overview of transport 

Replaces Induction 
Linacs with medium-
frequency rf (~200MHz) !
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Longitudinal Motion (1-D simulations)

Drift Bunch

φ−δE rotate Cool

System would capture both signs (µ+, µ-) !!
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Adiabatic Buncher overview

• Want rf phase to be zero for 
reference energies as beam 
travels down buncher 

• Spacing must be N λrf              
⇒λrf increases (rf frequency 
decreases)

• Match to λrf= ~1.5m at end:

• Gradually increase rf gradient 
(linear or quadratic ramp):
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Example: λrf : 0.90→1.5m
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Adiabatic Buncher overview

• Adiabatic buncher 
• Set  T0, δ(1/β):

• 125 MeV/c, 0.01
• In buncher:

• Match to λrf=1.5m at end:

• zero-phase with 1/β at integer 
intervals of δ(1/β) :

• Adiabatically increase rf gradient:
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λrf : 0.90→1.5m



7

φ−δΕ Rotation
• At end of buncher, change rf to 

decelerate high-energy bunches, 
accelerate low energy bunches

• Reference bunch at zero phase,  
set λrf less than bunch spacing
(increase rf frequency)

• Places low/high energy bunches at 
accelerating/decelerating phases

• Can use fixed frequency (requires 
fast rotation)   or

• Change frequency along channel 
to maintain phasing         “Vernier”
rotation –A. Van Ginneken 



8

“Vernier” φ−δΕ Rotation
• At end of buncher, choose:

• Fixed-energy particle T0
• Second reference bunch TN
• Vernier offset δ

• Example:
• T0 = 125 MeV 
• Choose N= 10, δ=0.1

– T10 starts at 77.28 MeV
• Along rotator, keep reference 

particles at  (N + δ) λrf spacing
• φ10 = 36° at δ=0.1
• Bunch centroids change:

• Use Erf = 10MV/m; LRt=8.74m
• High gradient not needed …
• Bunches rotate to ~equal 

energies.

R10rf10R10 z)sin(Ee)0(T)z(T φ+= λrf : 1.485→1.517m in rotation;
λrf = ∆ct/10 at end

(λrf → 1.532m)

Nonlinearities cancel:
T(1/β)  ; Sin(φ)
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Key Parameters
• General

• Muon capture momentum (200MeV/c?) 280MeV/c?
• Baseline rf frequency (200MHz) 

• Drift
• Length LD

• Buncher – Length (LB)
• Gradient, ramp VB′ (linear OK)
• Final Rf frequency (LD + LB) δ(1/β) = λRF

• Phase Rotator-Length (LφR)
• Vernier, offset : NφR, δV

• Rf gradient VφR ′

• COOLing Channel-Length (LC)
• Lattice, materials, VC, etc.

• Match into cooling channel, Accelerator 
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Implementation in ICOOL
• Define Two reference 

particles: P1, P2

• ACCEL option 10
• N –wavelengths between 

ref particles
• V(z) = A +Bz +Cz2

• Long. Mode
• Phase model 0 or 1

– 0 at t1 (REFP particle 1)
– 1 at (t1 + t2)/2

• REFP –reference particle(s)
• 3 –constant velocity
• 4 –energy loss + reference 

energy gain in cavities

SREGION         !  RF
0.50  1    1e-2
1  0.   0.30
ACCEL
10. 0. 0. 0. 5.05   1. 30. 15 0 0  0. 0. 0. 0. 0

VAC
NONE

0. 0. 0. 0. 0.   0. 0. 0. 0. 0.

Caution: reference particles do not see actual rf fields
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Study 2a Cooling Channel
• Need initial cooling channel

• (Cool εT from 0.02m to 0.01m)
• Longitudinal cooling ?

• Examples
• Solenoidal precooler (Palmer)
• “Quad-channel” precooler
• 3-D precooler

• Match into precooler
• First try was unmatched
• Transverse match

– B=Const. ⇒ B sinusoidal
– Gallardo, Fernow & Palmer



12

Palmer Dec. 2003 scenario
• Drift –110.7m
• Bunch -51m

• V’ = 3(z/LB) + 3 (z/LB)2 MV/m  
(× 2/3)  (85MV total)

• δ(1/β) =0.0079
• φ-E Rotate – 52m – (416MV total)

• 12 MV/m (× 2/3)
• P1=280 , P2=154 δV = 18.032

• Match and cool (100m)
• V’ = 15 MV/m (× 2/3)
• P0 =214 MeV/c 
• 0.75 m cells, 0.02m LiH
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Simulation results (from Gallardo)
• (Palmer, Gallardo, 

Fernow,…
• 0.25 µ/p in 30π mm 

acceptance
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Variation –Be absorbers
• Simply replace LiH absorbers with 

Be absorbers 
• suggested by M. Zisman
• (0.02m LiH⇒ 0.0124m Be)

• Performance somewhat worse
• Cooling less
(εtr ~0.0093; LiH has 0.0073)

• Best is ~0.21µ/p within cuts
after 80m cooling
• (where LiH has ~0.25 at 100m)

• Be absorbers could be rf windows 

• H2 gas could also be used
• Gas-filled cavities  (?) 

Mu Capture
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Shorter bunch Rotator

Cool (to 100m)
Rotate
(26m)Bunch

(51m)Drift (123.7m)

0.00E+00
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4.00E-01
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6.00E-01
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0.00E+00 4.00E+01 8.00E+01 1.20E+02 1.60E+02 2.00E+02 2.40E+02 2.80E+02 3.20E+02

e_t < 0.30

e_t< 0.15

All mu's

• Drift –123.7m (a bit longer)
• Bunch -51m

• V’ = 3(z/LB) + 3 (z/LB)2 MV/m         
• δ(1/β) =0.0079

• φ-E Rotate – 26m –
• 12 MV/m (× 2/3)
• P1=280 , P2=154 δV = 18.1
• (Also P1=219 , P2=154,           

δV = 13.06)
• Match and cool (100m)

• V’ = 15 MV/m (× 2/3)
• P0 =214 MeV/c
• 0.75 m cells, 0.02m LiH

• Obtain ~0.22 µ/p
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How many rf frequencies?
• Example has new 

frequency every rf cavity
• Elvira and Keuss explored 

how many different rf
cavities were needed, 
using Geant4 

• 60 initially
• 20 OK
• 10 also OK, but slightly 

worse performance

• Need to go through this 
exercise for present 
scenario 

Only 20 frequencies
and voltages.

(20 equidistant
linacs made of 3 cells)
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Try with reduced number of  frequencies
• Change frequency every 6 

cells (4.5m)
• Buncher (11 freqs.):

• 294.85, 283.12, 273.78, 265.04, 
256.04, 249.13, 241.87, 235.02, 
228.56, 222.43, 216.63 MHz

• Rotator (6 freqs)
• 212.28, 208.28, 205.45, 203.52, 

202.34, 201.76
• Cooler (200.76 MHz)

• Obtains ~0.2  µ/p
• (~0.22 µ/p for similar continuous 

case - 105 frequencies)
• Not reoptimized ….

• Phasing within blocks could be 
improved, match into cooling…

Cool (to 100m)
Rotate
(26m)Bunch

(51m)Drift (123.7m)

Mu Capture
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Short bunch train option
• Drift – 20m
• Bunch – 20m 

• Vrf = 0 to 15 MV/m (× 2/3)
• P1 at 205.037, P2=130.94
• δN = 5.0

• Rotate – 20m
• δN = 5.05
• Vrf = 15 MV/m (× 2/3)

• Palmer Cooler up to 100m 
• Match into ring cooler

40m

60m

95m
Cool (to 100m)

Rotate
(20m)Bunch

(20m)

Drift (20m)
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Simulation results
• ICOOL results

• 0.12 µ/p within 0.3π cm 
acceptance

• Bunch train ~12 bunches 
long  (16m)

• (but not 8 bunches …)
• Could match into ring 

cooler (C~40m)
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All mu's
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FFAG-influenced variation – 100MHz
• 100 MHz example

• 90m drift; 60m buncher, 40m 
rf rotation

• Capture centered at 250 MeV

• Higher energy capture 
means shorter bunch train

• Beam at 250MeV ± 200MeV 
accepted into 100 MHz buncher

• Bunch widths  < ±100 MeV

• Uses ~ 400MV of rf
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Current Optimization procedures:

Optimization methods could be 
improved …
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Summary
• High-frequency Buncher and φ−δE Rotator simpler

and cheaper (?) than induction linac system
• Performance better (?) than study 2,

And
• System will capture both signs (µ+, µ-) !

(Twice as good ?)

• Method could be baseline capture and phase-energy 
rotation for any neutrino factory …

To do:
• Optimizations, Best Scenario, cost/performance …
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