PALMER DESIGN FRONT-END: STUDY 2-A

APS Neutrino Study
Machine Design Group Meeting
ANL
March 3-4, 2004

R. Fernow, J. Gallardo, R. Palmer; D. Neuffer

Outline

- Schematics of a Neutrino Factory
- Schematics of the Front-End
- Schematic of the Cooling Lattice
- Performance of the Front-End
- Some Attempts towards a Realistic Channel (next talk)

Schematics of Neutrino Factory

RLA based

Dogbone based.

Schematics of the Front End

Cooling Lattice

rf-Frequency

Need to be \approx 10 frequencies.

ϵ_T VS. z

ϵ_L VS. z

p_z vs. z

β -function vs. z

Number of μ s over proton

 N_0 total μ/p

 N_1 within $\epsilon_T=30$ mm-rad and $\epsilon_L=150$ mm

z-vs-p: drift; bun.; rot.; cool.

Table of performance

Table 1: Study-2; Palmer; B_z periodic in drift and buncher: 1 R=0.32 2 R=0.43; Maxwellian and Be windows in the cooling section

	λ ϵ_T		ϵ_L		L	ϵ_6		N_0		N_1		N_2	
ST-2.		7.7	2.7	95.0	25.6	6.0	0.2	0.37	0.22			0.08	0.16
Palmer.	0.	9.5	6.5	72.4	62.5	6.6	2.7	0.51	0.42	0.20	0.24	0.08	0.12
D.&B. ¹	0.5/0.75	9.6	6.7	69.3	65.7	6.5	3.0	0.47	0.39	0.17	0.21	0.08	0.11
$D.\&B.^{2}$	0.5/0.75	9.7	6.6	76.3	63.0	7.3	2.7	0.45	0.37	0.17	0.20	0.08	0.11
Maxw.	0.5/0.75	9.8	6.6	68.1	60.2	6.7	2.7	0.44	0.36	0.17	0.20	0.07	0.10
+win.	0.5/0.75	9.8	6.7	83.7	73.1	8.6	3.3	0.41	0.31	0.14	0.15	0.06	0.08

$$N_0$$
 total μ/p

$$N_1$$
 within $\epsilon_T=30$ mm-rad and $\epsilon_L=150$ mm

$$N_2$$
 within $\epsilon_T=15$ mm-rad and $\epsilon_L=150$ mm

