Phase 1 Tasks
International Scoping Study: Machine Working Group

Michael S. Zisman
Center for Beam Physics
Accelerator & Fusion Research Division
Lawrence Berkeley National Laboratory

ISS Machine Council Meeting
August 22, 2005
Proton Driver

• Examine candidate machine types for 4 MW operation
 — FFAG (scaling and/or non-scaling)
 — Linac (SPL and/or Fermilab approach)
 — Synchrotron (J-PARC and/or AGS approach)

 • consider
 - beam current limitations (injection, acceleration, activation)
 - bunch length limitations and schemes to handle (1–3 ns)
 - repetition rate limitations (power, vacuum chamber,...)
 - tolerances (field errors, alignment, RF stability,...)
 - practical limitations on beam energy, if any (e.g., RF power)

• Compare and contrast Superbeam and Neutrino Factory requirements
Target/Capture/Decay

• Production rates as $f(E)$ for C, Ni, Hg
 — do reality check with HARP data if possible

• Target limitations for 4 MW operation
 — use guidance from FEA and experiments
 o consider bunch intensity, spacing, repetition rate

• Implications of 1 vs. 3 ns bunches on delivered beam

• Superbeam vs. Neutrino Factory comparisons
 — required emittance and focusing
 — horn vs. solenoid capture
 o energy range of interest
 — choice of target material
Bunching/Φ Rotation/Cooling (1)

- Compare performance of existing schemes (KEK, CERN, U.S.-FS 2b)
 - use common proton driver and target configuration(s)
 - consider possibility of both signs simultaneously
 - conclusions will require cost comparisons, which will come later

- Evaluate implications of reduced V_{RF} for each scheme
 - take $V_{\text{max}} = 0.75 \ V_{\text{des}}$ and $0.5 \ V_{\text{des}}$
 - re-optimize system based on new V_{max}, changing lattice, absorber, no. of cavities, etc.

- Optimize Φ Rotation/Bunching with lower gradients and/or fewer frequencies
 - evaluate performance
 - costs will come later
Bunching/Φ Rotation/Cooling (2)

・Evaluate trade-offs between cooling efficacy and downstream acceptance
 — consider several values of downstream acceptance (longitudinal and transverse)
 o small, medium, and large (or extra-large?)
 o see how much can cooling channel be simplified
 — develop agreed-upon figure-of-merit (e.g., μ/P_{prot})
 — consider need/merits of longitudinal cooling
 — costs will come later

・Evaluate performance issues and limitations
 — absorbers ($\text{LH}_2, \text{LiH, Be}$ or plastic)
 o consider implications of both sign muons
 — RF windows
 — interactions with Target group recommended for this topic
Acceleration

• Compare different schemes on an even footing
 — RLA, scaling FFAG, non-scaling FFAG, linac
 ◦ consider implications of keeping both sign muons

• Prepare scenarios with different values of acceptance
 — transverse and longitudinal
 ◦ small, medium, large (or extra-large?)
 — these will be used later to assess cost vs. acceptance

• Consider matching between acceleration subsystems
 — are there simplifications in using fewer types of machines?
Storage Ring

• Design implications of final energy (20 vs. 50 GeV)

• Optics requirements vs. beam emittance
 — arcs, injection and decay straight sections

• Implications of keeping both sign muons
 — can there be both injection and decay optics in this case?

• Implications of two simultaneous baselines

• Radiation issues at 10^{21} useful neutrinos per year
 — liner vs. open-midplane magnets

• Cost implications of design will be dealt with later
Organization

• Strawman organizer names (updated)
 — Driver: Garoby, Kirk, Mori, Prior
 — Target: Lettry, McDonald
 — Phase rotation/Bunching/Cooling: Fernow, Yoshimura
 — Acceleration: Berg, Mori, Prior
 — Storage Ring: Johnstone, Keil, Rees

 — names in green not yet confirmed
Summary

• We need to get web pages set up and encourage the task groups to start meeting regularly
 — I have asked Juan Gallardo and Scott Berg to help with this

• We need to firm up plans for topics and speakers for CERN meeting (see my later presentation)
 — we need a web registration page ASAP with an indication of who will attend our Working Group

• Must remind all task coordinators that we need ingredients for ongoing accelerator R&D program
 — this should be prioritized and filtered such that it appears “finite”