Neutrino Factory, µ[±] *Decay Rings*

C Johnstone, FNAL, F Meot, CEA, & G H Rees, RAL

ground level

 $sin \alpha = L_1 / 2R$ L₁, L₂ detector distances $\sin \theta = L_2/2R$ *R* the equatorial radius

Vertical Plane Layout for 2 Isosceles Triangle Rings

Triangle Ring Production Efficiencies

Best for *v*-production efficiency are vertically aligned, adjacent, triangular rings of minimum apex angle, with two detectors in opposite directions, in gnomonic projection. Some inclination to a vertical plane is expected for most pairs of detector sites:

For an RAL Neutrino Factory with two, 1608.8 km circumference decay rings, and neutrino detectors at Carlsbad (7513 km) and:

2nd detector site Vertical tilt Apex angle Production Efficiency

Baksan (3375 km)	30.6°	60.2°	2 x 23.9 %
Cyprus (3251 km)	9.7°	51.7 °	2 x 25.0 %
Crete (2751 km)	<i>0.9</i> °	48.6°	2 x 25.4 %

Schematic Plan of Triangle Ring

Triangle Apex Angles

- The number of arc cells sets the apex angle of triangle
- Smallest apex angle is for a triangle in a vertical plane
- Detectors at 7500 & 3500 km need ~ 50° apex angles.
- Groups of five cells are used for control of chromaticity

Arc cells Apex angles Circumi. Prod. straight	Enciency
10+10+10 ~60.0° 1608.8 m 383.7 m	2 x 23.9 %
10+10+11 52.8° 1608.8 m 398.5 m	2 x 24.8 %
10+10+12 ~45.4° 1608.8 m 415.3 m	2 x 25.8 %
10+10+16 ~22.4° 1608.8 m 482.0 m	2 x 30.0 %

Features of Isosceles Triangle Rings

- Designed for MW intensities: $\beta \gamma A = 30 (1.5)^2 (\pi mm r)$
- Uses a beam loss collection system for the muons
- Uses combined not separated function magnets in arcs
- Uses solenoid focusing in the two production straights
- Uses bend units at the ends of the production straights
- Uses box-car stacking for trains of 80 μ^+ & μ^- bunches
- Uses matching section bends to suppress dispersion (these influence the production straight orientations).
- Lattice is modified when upgrading from 20 to 50 GeV (Some magnets changed & ring re-aligned for 50 GeV).

Production Straight Focusing

- A figure of merit for lattice focusing is: $1 / (\gamma \beta_{max})$ For a FODO thin lens: $\gamma \beta_{max} = 2/(1 - \sin \mu/2) > 2$
- For an OSO lattice of weak solenoids: $\gamma \beta_{max} \approx I$ So, β_{max} (OSO) may be one half of β_{max} (FODO)
- Eight, 4.8 m solenoids in 398.4 m straight sections: At 20/50 GeV, β_{max}≈99/163 m for 4.3/6.4 T solenoids

Production Straight End Bends

- Neutrinos, from μ[±] beyond the bends, miss detectors. Bends introduce dispersion, however, into the lattice.
- Matching of dispersion to arcs requires further bends, which are different for the 20 and the 50 GeV lattices.
- Small changes in the arc bend angles are required to preserve the orientation of the 2 production straights.
- Dispersion in the third straight is also affected and so modified matching is needed for the 50 GeV upgrade.

Neutrino Production Straights

	20 GeV	50 GeV
Muon norm rms emitt (π mm r)	4.80	4.80
μ to v divergence angle ratio, R	0.10	0.12
Number of solenoids	8	8
Solenoid fields (T)	4.27	6.37
Length of solenoids (m)	4.75	4.75
Half of inter space (m)	21.1	21.1
β value at beam waist (m)	~94.3	~160.3
β (max) in solenoid (m)	~99.1	~163.1

Arc Cell Design

Old CERN 10,10,10 FODO design:

Lengths = 9.703, 0.7 m, μ = 90°, β_{max} = 16.6 m, D_{max} = 1.4 m.

New 10,10,11 (BF)O(BD)O design:

Lengths = 8.200, 1.2 m, μ = 72°, β_{max} = 12.7 m, D_{max} = 1.4 m. (space for cryostat ends, valves, correctors, diagnostics, vacuum & cooling)

Triangle ring lattice functions outside production straight.

Bunch Train Injection

Injection of n Trains of 80 μ[±] Bunches

Production straight of superconducting solenoids

R & *D* is needed for the high stored energy & power, pulsed kickers, with n (5 or 3) injected bunch trains per 50 Hz cycle. *Rise* & fall times are ~650 ns for the large acceptance rings.

Injection Parameters

 $\theta_{k} \approx \sqrt{\beta_{k}} \left(\sqrt{A} + \sqrt{\varepsilon} + t_{s} / \sqrt{\beta_{s}} \right) / \left(\beta_{k} \sin \Delta \mu + \frac{1}{2} NL \cos \Delta \mu \right)$

NLI (number, length, current) = 2 (Bp) $\theta_k \sqrt{(A \beta_v)} / \mu_o$ NTV (number, rtime, voltage) = 2 (Bp) $\theta_k \sqrt{(A \beta_k)}$

At 20 GeV, for A, $\varepsilon = 354.7$, 157.7 mm mr, $t_s = 15$ mm $\beta_s \approx \beta_k \approx \beta_v \approx 95.0$ m, $\Delta \mu \approx 25^\circ$, $B\rho = 67.06$ T m, T = 460 ns:

Use 8, shorted, 3m, 10 Ω delay line, push pull K with 14 x [50 kV PFN, 5 kA pulsers & 10 Ω feeders] /ring.

NL = 24 m, $\theta_k = 6.47 mr$, I = 5000 A, $NTV \sim 0.18 V s$

Muon Beam Loss Collection

- Due to the e[±] losses after μ[±] decays, the warm bores of S/C arc magnets have to be cooled, & clad with Pb. (The cladding absorbs > 80% of the e[±] beam power.)
- Direct μ[±] wall loss also leads to magnet heating, and to minimise this, μ[±] loss collection is proposed, with primary and secondary collimators in 4 FODO cells at the centre of the short straight section of the ring,
- Primary collimators are set for : $\beta \gamma A = 30 \ (\pi \ mm \ r)$. and ring acceptances are: $\beta \gamma A = 30 \ (1.5)^2 \ (\pi \ mm \ r)$.

RF System to Contain Bunch Structure

- An RF system is needed only if $n = 5 \& \Delta p/p > \pm 2.5 \%$ Injected bunches may expand in phase until $\Delta \phi = \pm 90^{\circ}$
- The inductive wall fields are defocusing as γ is > γ-t
 The required net RF containing field scales as (Δp/p)²
- 30 MV, 201 MHz containing fields/ring for Δp/p = ±1%
 3 cavities, 2x1 MW input couplers for ~ 5.4 MW per ring
- Cavities on tune; loading alters with each injected train Reflected power is dissipated in the circulator loads
- The dynamic aperture improves for lower $\Delta p/p$ beams

Survival (ϵ =60 (π) mm r, Δ =±4%) Horizontal phase space Vertical phase space

Tracking of μ^{\pm} with sextupoles in the triangle ring arcs.

Tracking the linear machine shows very weak coupling and well-behaved transverse motions for $\Delta p/p = \pm 4\%$. The effect of machine errors is next to be determined.

Parameters for 52.8° Apex Angle Triangle Rings

- Circumference of decay rings:
- Length of production straights:
- Production straight efficiency:
- *µ* to *v* angle ratio at 20 GeV:
- *µ* to *v* angle ratio at 50 GeV:
- Max β in the ring at 20 GeV:
- Max β in the ring at 50 GeV:
- Q_h and Q_v values at 20 GeV:
- Q_h and Q_v values at 50 GeV:

1608.8 m 398.5 m 2 x 24.8 % 0.098 0.119 120.0 m 184.0 m 13.37, 13.18 13.19, 12.82

Design Summary

- An outline design has been made for 2, isosceles triangle, 20 (potentially 50) GeV, μ[±] storage rings
- The MW rings have large βγA, at 30 (1.5)² (π mm r).
 C = 1609 m, L = 398 m, ξ = 2 x 24.8%, 52.8° apex Δ.
- Production straight solenoids give lower beam sizes.
 μ to v angle ratios are 0.10 & 0.12, at 20 & 50 GeV.
- Injection difficult for uncooled (45 π mm r) μ[±] beams.
 F Meot is tracking to find dynamic aperture with errors.

Vertical Bow-Tie Decay Rings

Advantages:

- a reduced vertical tunnel depth of ~ 300 m (~ 435 m for triangular and racetrack rings);
- a higher v production efficiency of 53.4% (49.6% for triangular rings and 38.2% for racetracks);
- a greater choice of the opening angle around 50°.

Disadvantages

a larger number of main bend cells are required (40)
 (31 for comparable isosceles triangle, shaped rings)

Polarisation retained?

Vertical Bow-Tie Decay Rings

Relative Costs

The three ring designs have the arcs, the matching sections and the production straights all interchangeable (in principle). Thus the cost issues reduce to the following:

The additional bend cells & fewer quads for the bow-tie rings. The reduced depth of the tunnel for the bow-tie rings. The additional tunnel (smaller cross section) for the racetracks The additional services and beam lines for the racetracks.

Ring Comparisons

- 1. If suitable detector sites can be found, the triangle or bow-tie shapes are favoured.
- 2. If suitable detector sites are not available, racetracks in separate tunnels are needed.
- 3. If designs 1 and 2 are both proposed, the former has the following advantages:

the need for only one tunnel and a larger neutrino production efficiency (which is > the gain of adding μ^- beams).