

'Dogbone' RLA – Error Tolerances and Tracking

Alex Bogacz Jefferson Lab

- Symmetric 5 GeV 'Dogbone' RLA Linear Optics
- Front-to-End Multi-particle Tracking 30 mm rad Acceptance (normalized)
- Magnet Misalignment Errors DIMAD Monte Carlo Simulation
- Focusing Errors Tolerance Betatron Mismatch Sensitivity and Tunability
- Magnet Field Quality Specs Emittance Dilution due to Nonlinearities

— Jefferson Lab —

Thomas Jefferson National Accelerator Facility

Symmetric Muon Acceleration Complex

- Linear pre-accelerator (273 MeV/c 1.5 GeV)
- Symmetric 'Dogbone' RLA (allowing to accelerate both μ^+ and μ^- species), 3.5-pass (1.5 5 GeV)

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

efferson Pab

Linac Optics – Arcs, multi-pass linac

Multi-pass linac optics additionally constrained by the mirror symmetry of the droplet arcs

- at the exit/entrance from/to the previous/next linac: the betas are equal and the alphas are of the opposite sign
- Optimized 'bisected' linac was chosen as follows:
 - 90⁰ phase advance/cell is set for the 'half pass' linac (1.5-2GeV).
 - as a consequence linac phase advance/cell in the first part of 1-pass drops to about 45^o.
 - to avoid large 'beta beating' one chooses to keep 45^o phase advance/cell throughout the second part of the linac (Bob Palmer).
 - the phase advance at the end of 2-pass linac drops by another factor of two (22.5⁰).
 - the 'beta beating' is rather small on higher passes (2 and 3)

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

efferson Pab

Initial beam emittance/acceptance after cooling at 273 MeV/c

	8 _{rms}	Α = (2.5) ² ε
mm∙rad	4.8	30
mm	27	150
mm	0.07 176	±0.17 ±442
	mm∙rad mm	ε rmsmm·rad4.8mm270.07 176

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

efferson Pab

Pre-accelerator – different style cryo-modules

	Short	Medium	Long
Number of periods	12	18	22
Total length of one period	3 m	5 m	8 m
Number of cavities per period	1	1	2
Number of cells per cavity	1	2	2
Cavity accelerating gradient	15 MV/m	15 MV/m	15 MV/m
Real-estate gradient	3.72 MV/m	4.47 MV/m	5.59 MV/m
Aperture in cavities (2a)	460 mm	460 mm	460 mm
Aperture in solenoids (2a)	460 mm	460 mm	460 mm
Solenoid length	1 m	1 m	1 m
Solenoid maximum field	1.5 T	1.9 T	3.9 T

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Linear Pre-accelerator – Twiss functions and beam envelope (2.5 σ)

Fri Dec 03 11:22:15 2004 OptiM - MAIN: - D:\Study 2A\PreLinac\Linac_sol.opt

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Introduction of synchrotron motion in the initial part of the linac

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

International Scoping Study Meeting, RAL, UK, April 26, 2006.

Injection Chicane – both $\mu^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle -}$

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

International Scoping Study Meeting, RAL, UK, April 26, 2006.

ann f

Chicane - 'dogleg'

Wed Apr 26 00:28:03 2006 OptiM - MAIN: - D:\ISS_dogbone\Chicane\Chicane_dogleg.opt

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Alex Bogacz, 'Dogbone' RLA - Error Tolerances and Tracking

Linac-Arc1-Linac Matching

(β_{out} = β_{in} ,and α_{out} = - α_{in} , matched to the linacs)

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Alex Bogacz, 'Dogbone' RLA - Error Tolerances and Tracking

Arc 1 – Mirror-symmetric Optics

(β_{out} = β_{in} ,and α_{out} = - α_{in} , matched to the linacs)

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Arc 2 – Mirror-symmetric Optics ($\beta_{out} = \beta_{in}$, and $\alpha_{out} = -\alpha_{in}$, matched to the linacs)

Fri Jan 20 13:32:29 2006 OptiM - MAIN: - M:\acc_phys\bogacz\ISS_dogbone\Lattice\Arc2.opt

- Jefferson Lab -

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Alex Bogacz, 'Dogbone' RLA - Error Tolerances and Tracking

Arc 3 – Mirror-symmetric Optics ($\beta_{out} = \beta_{in}$, and $\alpha_{out} = -\alpha_{in}$, matched to the linacs)

Fri Jan 20 13:38:41 2006 OptiM - MAIN: - M:\acc_phys\bogacz\ISS_dogbone\Lattice\Arc3.opt

\$ang0= 5.1577 deg \$BP=\$PI*\$Hr*\$ang/(180*\$Lb); => 10.64 kGauss \$ang=(90+\$ang0)/(\$Nin-2*\$Nout); => 6.797 deg \$Ang_out=\$ang0+2*\$Nout*\$ang; => 45.94 deg \$Ang_in=2*\$Nin*\$ang; => 271.88 deg

 quadrupoles (triplet):

 L[cm]
 G[kG/cm]

 68
 -0.6537

 125
 0.6565

 68
 -0.6537

- Jefferson Lab -

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Magnet Misalignment Errors

Lattice sensitivity to random misalignment errors was studied via DIMAD Monte-Carlo assuming:

quadrupole misalignment errors:

F:
$$\sigma_x = \sigma_y = 1 \text{ mm}$$

D: $\sigma_x = \sigma_y = 1 \text{ mm}$ $(\sigma_{x,y'} = \sigma_{x,y}/L)$
$$\begin{cases} \sigma_{x'} = \sigma_{y'} = 0.8 \times 10^{-3} \\ \sigma_{x'} = \sigma_{y'} = 1.47 \times 10^{-3} \end{cases}$$

- Gaussian distribution was chosen for individual quad misalignments
- Resulting reference orbit distortion (uncorrected) for Arc 2 is illustrated below

Similar level of dipole misalignment errors had virtually no effect on random steering

Thomas Jefferson National Accelerator Facility

ellerson q

Arc 2 – Magnet Misalignment Errors

- Same level of orbit drifts due to quad misalignments for other 'Dogbone' segments (Arc 1, 3 and linacs)
- Orbit drifts at the level of ~3 cm can easily be corrected by pairs of hor/vert correctors (2000 Gauss cm each) placed at every triplet girder

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Tefferson Lab

Initial beam emittance/acceptance after cooling at 273 MeV/c

	8 _{rms}	Α = (2.5) ² ε
mm∙rad	4.8	30
mm	27	150
mm	0.07 176	±0.17 ±442
	mm∙rad mm	ε rmsmm·rad4.8mm270.07 176

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

efferson Pab

Longitudinal Beam Dynamics – Tracking

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Large Momentum Compaction for a 'droplet' arc

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Cellerson Pab

The Contract

Cumulative Focusing Errors – Magnet Tolerances

• Focusing 'point' error perturbs the betatron motion leading to the Courant-Snyder invariant change:

Each source of field error (magnet) contributes the following Courant-Snyder variation

$$\delta\varepsilon = \varepsilon + 2\sqrt{\varepsilon\beta} \cos\mu \,\delta\theta + \beta\delta\theta^2 \quad , \qquad \delta\theta = \sum_{m=1}^{\infty} \delta\phi_m x^m, \qquad \phi_n = \frac{\int G_n dl}{B\rho} \left[cm^{-n} \right] \qquad x = \sqrt{\varepsilon\beta} \sin\mu$$

where, m =1 quadrupole, m =2 sextupole, m=3 octupole, etc

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

ellerson Pab

Cumulative Focusing Errors – Magnet Tolerances

Cumulative mismatch/emittance increase along the lattice (N sources):

$$\varepsilon_{N} = \varepsilon \prod_{n=1}^{N} \left(1 + 2\beta \sum_{m=1}^{N} \left(\sqrt{\varepsilon\beta} \right)^{m-1} \delta\phi_{m} \cos\mu \sin^{m}\mu + \beta^{2} \left(\sum_{m=1}^{N} \left(\sqrt{\varepsilon\beta} \right)^{m-1} \delta\phi_{m} \sin^{m}\mu \right)^{2} \right)$$

Standard deviation of the Courant-Snyder invariant is given by:

$$\frac{\sigma_{\varepsilon}}{\varepsilon} = \frac{\sqrt{\left\langle \delta \varepsilon^{2} \right\rangle - \left\langle \delta \varepsilon^{2} \right\rangle^{2}}}{\varepsilon} = \sqrt{\sum_{i=1}^{N} \left[2\beta_{i} \sum_{m=1}^{N} \left(\sqrt{\varepsilon\beta_{i}} \right)^{m-1} \delta\phi_{m} \left\langle \cos \mu \sin^{m} \mu \right\rangle + \beta_{i}^{2} \left\langle \left(\sum_{m=1}^{N} \left(\sqrt{\varepsilon\beta_{i}} \right)^{m-1} \delta\phi_{m} \sin^{m} \mu \right)^{2} \right\rangle \right]}$$

Assuming uncorrelated errors at each source the following averaging (over the betatron phase) can by applied:

$$\langle \ldots \rangle = \frac{1}{2\pi} \int_{0}^{2\pi} d\mu \ldots$$

- Jefferson Lab -

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Cumulative Focusing Errors – Magnet Tolerances

Hon Comuter

Some useful integrals :

$$\langle \cos \mu \sin^m \mu \rangle = 0$$
,
 $\langle \sin^m \mu \rangle = \frac{m-1}{m} \langle \sin^{m-2} \mu \rangle = \begin{cases} 0 & \text{m odd} \\ \frac{(m-1)!!}{m!!} & \text{m even} \end{cases}$

will reduce the coherent contribution to the C-S variance as follows:

$$\frac{\sigma_{\varepsilon}}{\varepsilon} = \sqrt{\sum_{i=1}^{N} \left[2\beta_i \sum_{m=1}^{N} \left(\sqrt{\varepsilon\beta_i} \right)^{m-1} \delta\phi_m \left\langle \cos\mu \sin^m \mu \right\rangle + \beta_i^2 \left\langle \left(\sum_{m=1}^{N} \left(\sqrt{\varepsilon\beta_i} \right)^{m-1} \delta\phi_m \sin^m \mu \right)^2 \right\rangle \right]}$$

Including the first five multipoles yields:

$$\frac{\sigma_{\varepsilon}}{\varepsilon} = \sqrt{\sum_{i=1}^{N} \left\{ \beta_{i}^{2} \left[\delta\phi_{1}^{2} \left\langle \sin^{2} \mu \right\rangle + \varepsilon \beta_{i} \left(\delta\phi_{2}^{2} + 2\delta\phi_{1}\delta\phi_{3} \right) \left\langle \sin^{4} \mu \right\rangle + \left(\varepsilon \beta_{i} \right)^{2} \left(\delta\phi_{3}^{2} + 2\delta\phi_{1}\delta\phi_{5} + 2\delta\phi_{2}\delta\phi_{4} \right) \left\langle \sin^{6} \mu \right\rangle + \dots \right] \right\}}$$

$$\frac{1}{2} \frac{3}{4}$$

$$\frac{1}{2} \frac{3}{4} \frac{3}{6}$$

$$\frac{1}{2} \frac{3}{4} \frac{5}{6}$$
Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Cumulative Focusing Errors – Magnet Tolerances

- Beam radius at a given magnet is : $a_i = \frac{1}{2}\sqrt{\epsilon\beta_i}$
- One can define a 'good fileld radius' for a given type of magnet as: $a = Max(a_i)$
- Assuming the same multipole content for all magnets in the class one gets:

$$\frac{\sigma_{\varepsilon}}{\varepsilon} = \sqrt{\sum_{i=1}^{N} \frac{1}{2} \beta_i^2} \times \sqrt{\delta \phi_1^2 + \frac{3}{2} a^2 \left(\delta \phi_2^2 + 2\delta \phi_1 \delta \phi_3\right) + \frac{5}{2} a^4 \left(\delta \phi_3^2 + 2\delta \phi_1 \delta \phi_5 + 2\delta \phi_2 \delta \phi_4\right) + \dots}$$

The first factor purely depends on the beamline optics (focusing), while the second one describes field tolerance (nonlinearities) of the magnets:

$$\Phi = \sqrt{\delta\phi_1^2 + \frac{3}{2}a^2(\delta\phi_2^2 + 2\delta\phi_1\delta\phi_3) + \frac{5}{2}a^4(\delta\phi_3^2 + 2\delta\phi_1\delta\phi_5 + 2\delta\phi_2\delta\phi_4) + \dots}$$

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

ellerson C

Field Error Tolerances – Magnet Specs

- The linear errors, m =1, cause the betatron mismatch invariant ellipse distortion from the design ellipse without changing its area no emittance increase.
- By design, one can tolerate some level (e.g. 10%) of Arc-to-Arc betatron mismatch due to the focusing errors, δφ₁ (quad gradient errors and dipole body gradient) to be compensated by the dedicated matching quads

$$\left(\frac{\sigma_{\varepsilon}}{\varepsilon}\right)_{mis} = \sqrt{\frac{1}{2}\sum_{n=1}^{N} \left(\beta_n \delta \phi_1\right)^2} = \sqrt{\frac{1}{2}\Delta \phi_1^2 \sum_{n=1}^{N} \left(\beta_n\right)_{quad}^2 + \frac{1}{2}\delta \phi_1^2 \sum_{n=1}^{N} \left(\beta_n\right)_{dipole}^2}$$

The higher, m > 1, multipoles will contribute to the emittance dilution – 'limited' by design via a separate allowance per each segment (Arc, linac) (e.g. 1%)

$$\left(\frac{\sigma_{\varepsilon}}{\varepsilon}\right)_{dil} = \sqrt{\frac{1}{2}\sum_{n=1}^{N} \left(\beta_{n}\delta\phi\right)^{2}} = \sqrt{\frac{1}{2}\Delta\phi_{quad}^{2}\sum_{n=1}^{N} \left(\beta_{n}\right)_{quad}^{2} + \frac{1}{2}\Delta\phi_{dipole}^{2}\sum_{n=1}^{N} \left(\beta_{n}\right)_{dipole}^{2}} \qquad \Delta\phi = \sqrt{\sum_{n=1}^{2}\frac{2n+1}{2}a^{2n}\sum_{i=1}^{n}\delta\phi_{i}\delta\phi_{2(n+1)-i}}$$

$$\Delta\phi_{quad} = a^{2}\sqrt{\frac{5}{2}\left(\delta\phi_{3}^{2} + 2\delta\phi_{1}\delta\phi_{5}\right) + \frac{9}{2}a^{4}\left(\delta\phi_{5}^{2} + 2\delta\phi_{1}\delta\phi_{9}\right)} \qquad \Delta\phi_{dipole} = a\sqrt{\frac{3}{2}}\delta\phi_{2}^{2} + 5a^{2}\delta\phi_{2}\delta\phi_{4} + \dots$$
Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Arc1-Linac1:

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Jefferson Pab

Arc2-Linac2:

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Jefferson Lab

Arc1-Linac3:

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy

Jefferson Jab

Summary

- Symmetric 'Dogbone' RLA (allowing to accelerate both μ^+ and μ^- species), 3.5-pass (1.5 5 GeV) scheme Complete linear Optics
 - multi-pass linac optics optimized focusing profile (tolerable phase 'slippage')
 - mirror-symmetric droplet' Arc optics based on constant phase advance/cell (90°)
- Front-to-End Multi-particle Tracking 30 mm rad normalized acceptance, 5 % particle loss
- Magnet misalignment error analysis (DIMAD Monte Carlo on the above lattice) shows quite manageable level of orbit distortion for ~1 mm level of magnet misalignment error.
- Great focusing errors tolerance for the presented lattice 10% of Arc-to-Arc betatron mismatch limit sets the quadrupole field spec at 0.1%

Thomas Jefferson National Accelerator Facility