Considerations on Proton Driver^{Muon Collaboration} Parameters for a Neutrino Factory

W. T. Weng Brookhaven National Laboratory

International Scoping Study KEK, Japan, Jan/23-25, 2006

Collaborators

J. S. Berg, R. Fernow, H. Kirk, N. Simos,W. Weng, BNL; M. Zisman, LBL;S. Brooks, RAL

Acknowledgement W. Chou, FNAL; D. Raparia, BNL

Outline

- 1. Motivation of this study
- 2. Examples of parameter dependence
- 3. Possible design parameter phase space
- 4. Comparative merit of various approaches
- 5. Future R&D
- 6. Summary and Conclusions

Motivations for This Study

- Understand the impacts and constraints imposed by downstream sub-systems
- Identify possible design parameter phase space of the Proton Driver
- Comparison of Linac, RCS, FFAG, and LAR configurations

This is a progress report to be completed in May

Considerations of parameters - I

To deliver 4 MW beam power on target, we consider the effects of

- 1. Energy
- 2. Repetition Rate
- 3. Intensity
- 4. Bunch Length
- Of the Proton Driver

Consideration of Parameters - II

We evaluate their impacts on

- 1. Target
- 2. Muon Collections and Conditioning
- 3. Muon Acceleration
- 4. Muon Decay Rings

 $\overline{\mathsf{P}}_{\text{arc}}(\mathsf{w}) = \mathsf{E}[\mathsf{eV}] \times \mathsf{N} \times \mathsf{e} \times \mathsf{f}_{\text{rep}}[\mathsf{Hz}]$

	10 Hz	25 Hz	50 Hz
10 GeV	250×10^{12}	100 ×	50×10^{12}
20 GeV	10^{12} 125 × 10^{12}	50×10^{12}	25×10^{12}

- Pions counted at rod surface
- **B**-field ignored within rod (negligible effect)
- Proton beam assumed parallel
 - Circular parabolic distribution, rod radius

Phase Rotator Transmission

The Study2 Target System

• Analysis I

- Count all the pions and muons that cross the transverse plane at z=50m.
- For this analysis we select all pions and muons with KE< 0.35 GeV.

Analysis II Post Cooling Count mesons within acceptance of 30π mm

Post-cooling 30π Acceptance

Summary

- For Negatives the peak occurs for 6 Gev < Proton KE < 11 GeV
- For Positives the peak occurs for
 9 Gev < Proton KE < 19 GeV
- Consensus: 10 GeV is a good place to be

Blackbody Radiation Stripping

Energy Dependence

Temperature Dependence

At 305 K (90 F) and 8 GeV, H⁻ loss rate = 0.8×10^{-6} m⁻¹

Summary of H⁻ Stripping Losses

Blackbody (305 K)	$0.8 \times 10^{-6} \text{ m}^{-1}$
Magnetic field	$10^{-9} \mathrm{m}^{-1}$
Residual gas	$0.1 \times 10^{-6} \text{ m}^{-1}$
Total	$0.9 \times 10^{-6} \text{ m}^{-1}$

- Transport line ~ 1 km \Rightarrow Loss on the beam line ~ 10^{-3}
- H⁻ Beam intensity = $1 \times 10^{14} \text{ s}^{-1} \Rightarrow \text{Loss rate} \sim 10^8 \text{ m}^{-1}\text{s}^{-1}$
- At 8 GeV \Rightarrow 0.13 W/m
- When MI operates at lower energy *E* with same beam power, loss will increase:

$$Loss = 0.13 \text{ W/m} \times \frac{120}{E \text{ (GeV)}}$$

Energy Dependence of H(0) Yield

H(0) Yield at Different Energies

Of interest is the pulse length assessment for the following power, rep-rate and consequently pulse intensity combinations

1 MW/50 H	[z 4	MW/50 Hz
12.0 e+12 p	pp 48	3.0 e+12 ppp
1 MW/200	Hz 4	MW/200 Hz
3.0 e+12 pp	p 12	2.0 e+12 ppp

24 GeV Protons on Copper Target

BROOKHAVEN NATIONAL LABORATORY

1 MW Proton Driver - Temperature Issues Power and Heat removal capacity from target go hand-in-hand

1 MW - 50 Hz Target Operating Temperature Assessment

- Primarily function of power and target geometry

- NOT a function of pulse length or rep rate

- Can be lowered with more cooling BUT there is saturation in cooling capacity for given target geome

1 MW/50 Hz PD – Shock Stress Effects

1 MW/50 Hz PD – target peak stresses 3ns – 30ns – 300ns – 600ns

Iss target stress Analysis

NATIONAL LABORATORY

4MW/50 Hz Proton Driver – Effect of pulse length Collaboration on target peak stresses [3ns – 30ns – 300ns – 600ns]

- 1. Solid target CAN support a proton driver operating at 1MW with 50 Hz rep-rate
- 2. Solid target CAN operate at 1MW at all pulse length
- 3. Solid target CANNOT operate at 4MW/50Hz, even with 600ns.
- 4. Liquid target has fewer such constraints(P, L, F) Modified solid Target design(non-stationary,...)

SUMMARY of Performance

1 MW/50 Hz	4 MW/50 Hz	
12.0 e+12 ppp	48.0 e+12 ppp	
YES	NO	
1 MW/200 Hz	4 MW/200 Hz	
3.0 e+12 ppp	12.0 e+12 ppp	
YES	MAYBE	

Design Parameter Phase Space

- 1. $8.0 \text{ GeV} \le \text{Energy} \le 20.0 \text{ GeV}$
- 2. Rep Rate ~ 50(25) Hz
- 3. Intensity 50*10**(12) ppp, at 10(20) GeV (very difficulty with solid target)
- 4. Bunch Length < 3 ns, for longitudinal

acceptance

Technology Matrix*(Picture will change after R&D)

	Linac	RCS	FFAG	LAR
Energy	В	А	А	А
Rep Rate	А	А	А	А
Intensity	А	А	B_	А
Bunch L	С	В	B_	В
Cost	B_	В	B+	B_

Accelerator/Target R&D Needed

- Generation of intense short bunch
- Optimal design of a proton linac
- Development of liquid target
- More study of the production of Pions and Muons
- Better understanding of impact on cost by the parameter choice

Summary and Conclusions

- We have presented the parameter constraint for the Proton Driver
- A preferred parameter phase space has been identified and relative merit of each technology has been evaluated
- Further study is need to complete the search and more R&D is needed for a reference design

