J-PARC Accelerators

Masahito Tomizawa

KEK Acc. Lab.

• Outline, Status, Schedule of J-PARC accelerator
• MR Beam Power Upgrade
J-PARC Facility

Materials and Life Science Experimental Facility

Hadron Beam Facility

Nuclear Transmutation Facility

Neutrino to Kamiokande

Linac (350m)

3 GeV Synchrotron (RCS)

50 GeV Synchrotron (MR)
Linac structures and parameters

- Ion Source: Volume Production Type
- RFQ: Stabilized Loop
- DTL: Electro-Quad in DT, 3 tanks
- Separated DTL(SDTL): no quad in DT, short tank(5cells), 32 tanks
- Annular Coupled Structure (ACS): axial symmetric
- Super Conducting Linac (SCL): wide aperture, high acceleration gradient

- particles: H⁻
- Energy: 181 MeV (RCS injection)
 400 MeV (RCS injection)
 600 MeV (to ADS)
- Peak current: 30 mA @181 MeV
 50 mA @400 MeV
- Repetition: 25 Hz (RCS Injection)
 50 Hz(RCS Injection + ADS application)
- Pulse width: 0.5 msec
3GeV Synchrotron (RCS)

- Rapid Cycle (25Hz)
- Ceramics vacuum chamber
- stranded conductor coil for D,Q magnets
- High field MA loaded cavity
- long lived carbon foil for charge exchange injection

- Circumference 348.3m
- Repetition 25Hz(40ms)
- Injection Energy 180/400 MeV
- Output Energy 3GeV
- Beam Power 0.6/1MW
- particles 0.50/0.83 \times 10^{14} ppp
- Harmonic 2
- Bunch Number 2
- Nominal Tune (6.72, 6.35)
- Transition γ_t 9.14
- S.C. Tune Shift -0.2
50GeV Synchrotron (Main Ring)

- Imaginary Transition γ
- High Gradient Magnetic Alloy loaded RF cavity
- Small Loss Slow Extraction Scheme
- Both Side Fast Extraction for Neutrino and Abort line
- hands on maintenance scheme for small radiation exposure

Circumference: 1567.5m
Injection Energy: 3GeV
Output Energy: 30GeV (slow)
40GeV (fast)
50GeV (Phase II)
Beam Power: 0.75MW (Phase II)
Particles: 3.3×10^{14} ppp
Repetition: 0.3Hz
Harmonic: 9
Bunch Number: 8
Nominal Tune: (22.4, 20.8)
Phase I

- **day-1 stage**
 - Linac: 180MeV, 30mA, 25Hz
 - RCS: 3GeV, 0.6MW
 - MR: 40GeV, 400kW

- **Next Stage**
 - Linac: 400MeV, 50mA, 25Hz
 - RCS: 3GeV, 1.0MW
 - MR: 40GeV, 670kW

Phase II

- Nuclear Transmutation Facility (ADS)
 - Linac: 600MeV, 50Hz
- Extension of Hadron and Neutron Facility
- MR: 50GeV, 750kW

From the diagram:

- Linac (Superconducting) 600MeV
- Linac (Normal Conducting) 400MeV
- 3GeV Synchrotron (25Hz)
- Neutrinos to SuperKamiokande
- Hadron Experimental Facility
- Materials and Life Experimental Facility
- Neutrinos to SuperKamiokande
Accelerator Schedule

<table>
<thead>
<tr>
<th>Linac</th>
</tr>
</thead>
<tbody>
<tr>
<td>• beam commissioning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• beam commissioning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>• beam commissioning</td>
</tr>
<tr>
<td>• slow beam commissioning</td>
</tr>
<tr>
<td>• Neutrino commissioning</td>
</tr>
</tbody>
</table>
MR injection

RCS h=2, 2 bunches
MR h=9, 8 bunches

3 GeV Ring
2 Buckets

25 Hz
(40msec/cycle)

Injection at 3GeV

Fast Extraction at 50GeV

50 GeV Ring
9 Buckets

beam current: 15μA
beam power: 750kW
(400MeV Linac)

50GeV original pattern
(PhaseII)

50GeV extraction

0.7s
0.17s
1.9s
0.87s

total 3.64s

Magnet power supply upgrade
Electric power storage system
(fly wheel generator, SMES)
Beam Power \[[kW] = \text{energy} \ [\text{GeV}] \times \text{beam current} \ [\mu\text{A}] \]

Beam current \(\propto \text{number of particles} \times \text{repetition} \)

Lower energy + higher repetition \(\longrightarrow \) same beam power
High Rep. Beam power 2MW

Bdot: 2.3 × 50GeV original pattern (3.64s repetition)
RF voltage: 2.3 × present voltage
electric storage system is necessary

Graph: Dipole and quadrupole magnets

Electric Power (MW)

Energy (GeV)

- 50GeV 750kW original pattern
- 50GeV, 750kW original pattern

Repetition: 0.54s, 0.81s, 1.08s, 1.35s
Eddy current of dipole chamber

SUS316L, 2mm thick

Bdot: $2.3 \times 50\text{GeV}$ original pattern

$\Delta B/B @\text{effective region} < 8.1 \times 10^{-4}$

Heat: 100W/chamber

----> acceptable
Present Fast Extraction Scheme
designed to extract 50GeV beam

Acceptance 19.5π

Emittance
3GeV 81π (54π ×1.5)
20GeV 14.4π
30GeV 10π
40GeV 7.6π
50GeV 6.1π
Larger acceptance orbit <30GeV (no thin septa)

Extracted orbit acceptance 38π

Kicker $L=2.43\text{m}$

Large aperture and compact kicker using lumped capacitance proposed
Low energy high rep. scheme can give same high power beam as high energy scheme at the same Bdot.

Merit:
1. Has low average and peak electric power
 ----> saves operation cost and power supply cost drastically
2. Damage due to accidental one shot beam loss is small.
 • Beam power/pulse is small
 • Beam size is large
 ----> Heat deposit /volume is small, thermal stress is small

1. Extracted beam emittance is larger
 --> Extraction orbit with large acceptance has been designed.
 --> Kicker development with large aperture has started.
2. Sextupole field and heat due to dipole chamber eddy current is acceptable
3. High rep. -->
 Injected beam power is higher
 --> Upgrade of the transport and ring collimators may be necessary
For 4MW Beam Power

$p p p \times 2-3$ in addition to 2MW scheme

- RCS $h=1$, MR $h=9$, 8 batches injection, $p p p \times 2$, $t_{inj} \times 2$
- barrier bucket injection, $p p p \times 2-3$, $t_{inj} \times 2-3$

Injection time is not negligible for high repetition

- 50GeV, RCS $h=1$, MR $h=9$, 8 batches, $Bdot \times 2.7$
 --> $p p p \times 2$
 space charge tune shift 0.16×2

- 50GeV, $Bdot \times 1.9$
 barrier bucket injection, 12 batches
 --> $p p p \times 3$
 space charge tune shift 0.16

- 20GeV, $Bdot \times 2.8$
 barrier bucket injection, 12 batches
 --> $p p p \times 3$
 space charge tune shift 0.16
For 4MW Beam Power

- add an accumulator ring (A. R.) in the MR tunnel
 RCS -> A. R. -> MR

save injection time to MR

Lower energy and higher repetition of MR can be possible.