Bunched beam Phase Rotation Optimization

R.B.Palmer

ISS KEK Workshop

1/23/06

- Study 2a
- Initial Concept
- 1D optimizing Model
- Problem with delta
- eg 1 unoptimized
- eg 2 optimized
- eg 3 Short
- probelem with delta
- eg 4 Adiabatic
- Conclusion

Study 2a Rotation with ICOOL

Study 2a diagnostics

- Lines are mean energies of time slices
- Note delta was not set as theory suggested

- Green line joins bunch centers
- It is not constant
- though deviations less than spread

Projections of previous plot

Method as Conceived

- Two reference particles, that see no RF, with p1 and p2,
- Drift 100 m
- Start RF with $\lambda = c(t_1 t_2)/n$ with n=18 where t_1 and t_2 (of reference particles)
- Increase the average RF gradient over next 50 m to bunch
- Lower the upper reference energy dE/dz=slope 1
- Increase the lower reference energy dE/dz=slope 2
- RF wavelength $\lambda = c(t_1 t_2 + \delta)/n$ with n=18 and δ =.03
- When reference 1 = reference 2 (56 m) go to the fixed wavelength $\lambda = c(t_1 t_2)/n$

Effect of Delta

- Black line is before rotation
- Black dot are bunch centers
- Red line is after delta lambda
- Red dots are delta E at centers
- The effect is sinusoidal

Computer Optimized Design

- 1D Model (but with some stansverse effect)
- start with generated tracks or tracks from ICOOL at end of drift
- Propagation can include an amplitude dependent effect
- Pure sin RF acceleration (no amplitude effect)
- Energy Loss in windows $(t \propto \mathcal{E}^2)$
- Embedded in optimizer

Try original concept (without window E loss, or amplitudes)

Parameters bucket centers

Length (m) 150

Centers of selected energies vs x

56 m Rotate Optimized

- similar to S2a
- Some gain from optimizing
- But no better for high E

Try shorter Rotation: 30 m (vs 56 m)

Problem with use of delta

56 m Rotate delta=0, more adiabatic

- \bullet Slow onset and removal of ref dE/dz
- No delta
- Significant apparent improvement

Compare Bunch Center E2's vs E1's

Gain may not be large because fewer high energy tracks

Conclusion

- Neuffer scheme does not work as I imagined
 - -Use of "delta f" does not work well
 - -Adiabatic bunch dragging seems better
- Reducing Rotation length looses higher energy tracks
- Have not tried increasing it
- Overall performance not clearly better (not shown)
 - -Need Ecalc9 like criterion
 - -Bunching not yet optimized
- Must transfer design to ICOOL
- Try optimizing in ICOOL (Marco)