FFAG Accelerators Experimental Results

M. Aiba (KEK) Y. Mori (Kyoto Univ.)

Operational FFAGs

- PoP FFAG (KEK): world first proton FFAG
 scaling, radial sector(DFD), E=0.5(I)MeV, com'd 2000
- I50MeV FFAG (KEK)
 scaling, radial sector(DFD), E=100(150)MeV, 2003
- Injector of KURRI FFAG chains
 scaling, spiral sector, E=2.5MeV, 2006, Jan. 1st.

PoP-FFAG

World First Proton FFAG Accelerator

Fundamental Parameters as experimental evidences

Transverse

```
chromaticity: Qx (Qz) vs. energy
```

tunability: Qx, Qz vs. F/D ratio

Longitudinal

```
synchrotron osc.: fs vs. energy
```

Closed orbit change

Field Optimization

Scaling $B \propto r^k$ including length $Bl \propto r^{k+1}$

Tune Measurement

RF knock-out

$$pQ_h + qQ_v = \pm m \pm \frac{f_{rf}}{f_{rev}}$$

Betatron Tunes -design vs. measurement-

Betatron Tunes for various F/D ratio at injection energy of PoP FFAG

@ Injection Energy

Synchrotron Frequency

Closed Orbit Change

energy gain/turn=const.

Beam Intensity

Injected beam

Ip=0.5mA,
$$\Delta T=3 \mu$$
 sec (4-turn injection)

$$Np=Ip \times \Delta T / e = I \times 10^{10} ppp$$

• Accelerated Beam; Np ~2-3 x10⁹ppp

No adiabatic capture process

Neutralization ($H^+ \rightarrow H^0$) at injection energy

Looks no beam loss after rf capture.

150-MeV FFAG

- Unexpected difficulties
- Lower Injection beam energy -reduced field
 Opereating tunes are drastic changed.
 - Need field correctors to avoid dangerous resonances
- Large magnetic field at straight section.
 - Large COD by magnetic devices (rf cavity, kicker etc.) which break periodicity and excite unwilling non-structure resonances.

Need non-ferromagnetic kicer, bumper and COD corrector for rf cavity.

- Shunt impedance drop of rf cavity.

Need large rf power and cooling for cavity

150-MeV FFAG beam intensity

Injected beam

```
Energy I0 MeV (not I2 MeV)

Repetition rate I00Hz

Intensity Ip=I0\muA at injection septum

Turn number 3turns(max.) : \DeltaT=2.5\mu sec
```

 $N_p = 1.6 \times 10^8 ppp, lp = 2.5 nA$

Extraced beam after acceleration
 Energy I00MeV

Intensity Ip=1.5nA after beam extraction, Efficiency: ~60%

Adiabatic capture effecitve but not perferct.

Looks small beam loss after rf capture.

FFAGs for ADS project

Kyoto University Research Reactor Institute (KURRI)

Parameters of the Accelerator Complex

	Injector	Booster	Main ring
Einj	100keV	2.5MeV	20MeV
Eext	2.5MeV	20MeV	150MeV
Lattice	Spiral	Radial	Radial
type	_	DFD	DFD
Acc.	Induction	rf	rf
scheme			
# of cells	8	8	12
k value	0-2.5	4.5	7.6
coil/pole	coil	coil	pole
Pext/Pinj	5.00	2.84	2.83
Rinj	o.6om	1.42m	4.54m
Rext	0.99m	1.71m	5.12m

Injector - spiral

Features

```
Spiral sector 8-fold symmetry
```

Field index changeable k=0 - 2.5

energy variable E=0.25 -2.5 MeV

Commissioning was successfully completed.
 Jan. 17, 2006.

スパイラル磁石形状(モデル1:48分割)

FFAGイオンベータからビーム出射に成功

2005年6月14日(月)16時00分

入射エネルギー100keV、加速エネルギー250keV、加速ビーム電流0.25mA、出射ビーム電流0.12mA

加速電圧:入射時(7 μ s)2.6kV、加速時(120 μ s)0.9kV、出射時(7 μ s)2.6kV

Extracted beam from injector k=2.3 (ion-beta), Jan. 15th, 2006

イオンβ(トリムなし)コミッショニングの軌道解析

三菱電機·先端総研·田中 2005-3-26

- ①100keV入射で 250keV程度までビー ム加速可能
- ②165keVで水平方向 線形共鳴を通過する