Updates on MICE

M. Yoshida
(Osaka Univ.)

Intl Scoping Study meeting @KEK
2006.1.24
MICE setup

- Spectrometer solenoid 1
- Matching coils 1.1+1.2
- Focus coils 1
- Focus coils 2
- Focus coils 3
- Matching coils 2.1+2.2
- Spectrometer solenoid 2
- Coupling Coils 1+2
- RF cavities 1
- RF cavities 2
- Liquid Hydrogen absorbers 1,2,3
- Trackers 1 & 2
 measurement of emittance in and out
- Diffusers 1&2
- Beam PID
 TOF 0
 Cherenkov
 TOF 1
- Downstream particle ID:
 TOF 2
 Cherenkov Calorimeter
- Incoming muon beam
MICE Step

- Check systematics of components step-by-step

Step I: Spring 2007

Step II

Step III

Step IV

Step V

Step VI: Aim 2009
Topics

- SciFi tracker prototype test
 - KEK test beam
 - Oct. 2005
 - Improved prototype
 - Newly-designed cryostat with cryocooler
- Design and Safety Review of the MICE Cryogenic Hydrogen System
 - RAL
 - Nov. 2005
- Test cryostat with MICE LH absorber
 - MTA in FNAL
- Plan to test MICE target in ISIS
 - Preparation work for June 2006
 - building target
- Test plan for detectors
- Procurement
 - scintillating / clear fiber
 - 2slot VLPC cryostat
 - superconductor
- Go for construction
Solenoid arrived on 21st Dec. 2005
MICE Target

- Target moved by linear actuator scrapes halo of ISIS beam
 - On demand
 - 1 – 3 Hz operation
- Testing the target is planned
 - June 2006
 - background measurement
 - building target
Test cryostat for MICE absorber

- Test cryostat with cryocooler for MICE LH2 absorber
- Test at MTA in FNAL
Spectrometer solenoid

Conceptual design and draft of build-to-spec completed
- field uniformity +/-3%
- 3 cryocoolers
SciFi tracker

- Prototype for cosmic-ray test (Oct. 2003)
 - enough high light yield ~ 10 p.e.
 - few dead channels ~ 0.5%
- Prototype with 4 stations
 - new connector design
 - almost final design of waveguide
Tracker front-end electronics

- 2-slot Cryostat with Sumitomo cryocooler
 - developed for MICE
- Two VLPC cassettes and prototype AFE II boards borrowed from DØ
- Experience in operation
 - moisture on lid due to high humidity in Japan
 - Pumps were brought far from magnet
 - good long term stability for more than 1 month
Tracker prototype test in KEK KEK-PS T585

- MICE SciFi tracker group planned testing prototype to check basic performance in 1 Tesla solenoid magnet.
- KEK-PS T585 was performed in Sept. – Oct. 2005 by world-wide collaboration.
- Participants: more than 20 people joined.
 - M. Yoshida, K. Yoshimura, H. Sakamoto, A. Horikoshi, K. Sakai, Yoshi Kuno, A. Sato and several students
 - Aron. Fish, Roger. Hare, K. Long, M. Ellis
 - Amit Klier, Kwame. Bowie, Xiofeng Yang, Alan Bross, P. Rubinov
 - J.S. Graulich

KEK-PS π2 beamline

Aerogel Cherenkov Counter

TOF counters

Tracker prototype in Superconducting solenoid magnet
Tracker installation
Particle identification by TOF & ACC

- Good PID performance for $e/\mu/\pi$
- TOF resolution ~ 60 ps
- Light yield in ACC ~ 30 p.e.
Tracker performance

- Succeeded to observe particle track in 1Tesla magnetic field
- Light yield in old stations are stable.
- Detail analysis on going to drive the performance

First reconstructed track in magnetic field

240 MeV/c \(\pi \) by TOF
Summary

- MICE phase-I has been approved, and preparing for Phase-II
 - MICE will start in spring next year (2007)
- Tracker test successfully performed
- Hydrogen absorber cooled by cryocooler is tested
- Target in ISIS will be tested
- Moving on construction phase
 - fiber procurement
 - superconducting solenoid
 - etc...