ν–Factory Front End Phase Rotation Simulations

David Neuffer
Fermilab
Muons, Inc.

Related by Richard Fernow
ISS Workshop
KEK
23 January 2006
Outline

• Neutrino Factory Front End Optimization
 • Improve neutrino factory scenario
 • For International Scoping study

• “High-frequency” Buncher and $\phi-\delta E$ Rotation
 • Study 2A scenario, Obtains $\sim 0.2 \mu/p$
 • Gas filled cavities
 - Higher gradients? In magnetic fields?
 - Cooling in buncher and rotator/shorter cheaper?
 System
Neutrino Factory – Study 2A

- Proton driver
 - Produces proton bunches
 - 8 GeV 10^{15} p/s
- Target and drift
 - $\pi \rightarrow \mu$ (> 0.2 μ/p)
- Buncher, bunch rotation, cool
- Accelerate μ to 20 GeV
 - Linac, RLA and FFAGs
- Store at 20 GeV (0.4ms)
 - $\mu \rightarrow e + \nu_\mu + \nu_e^*$
- Long baseline ν Detector
 - $>$1020 ν/year
Study2AP June 2004 scenario

- **Target** – Hg–jet within 20T solenoid
- **Drift** – 110.7m – within 1.75T solenoid
- **Bunch** – 51m
 - $V\delta(1/\beta) = 0.0079$
 - 12 rf freq., 110MV
 - 330 MHz → 230MHz
- **ϕ–E Rotate** – 54m – (416MV total)
 - 15 rf freq. 230 → 202 MHz
 - $P_1 = 280, P_2 = 154$ $\delta N_V = 18.032$
- **Match and cool** (80m)
 - 0.75 m cells, 0.02m LiH
- “Realistic” fields, components
Simplest Modification from Study 2A

- **Add gas** + higher gradient to obtain **cooling within rotator**
- ~300MeV energy loss in cooling region
- Rotator is 54m;
 - Need ~4.5MeV/m H₂ Energy
 - 133atm, 295°C K gas
 - ~250 MeV energy loss
- Alternating Solenoid lattice in rotator
- 20MV/m rf
- Lattice changes
“Final” configuration

- Drift, buncher as before:
 - 300 → 230MHz rf
 - 51m, $V = 3 \frac{z}{z_0} + 9\left(\frac{z}{z_0}\right)^2$
- “match” from 2 T to 2.75T alternating solenoid at end of buncher
- Rotator lattice
 - 0.75m cells, 0.5m rf/cell
 - 133A H₂, 3.4 MeV/cell
 - $V = 20\text{MV/m}$, $\phi = 20^\circ$
 - 54m
- Post Rotator Cooling lattice
 - $V = 16\text{MV/m}$
 - 133A H₂
ICOOI results—gas cavities

- ~0.20 μ/p within reference acceptance at end of φ–E Rotator
- ~0.10 μ/p within restricted acceptance (ε⊥<0.015m)
- Rms emittance cooled from ε⊥ = 0.019 to ε⊥ = ~0.009
- Longitudinal rms emittance ≈0.075

- Continuing Study 2A cooling does not greatly improve acceptance
Cooling simulation results
Modify initial solution

- Change pressure to 150Atm
- Rf voltage to 24 MV/m
- Transverse rms emittance cools 0.019 to ~0.008m
- Acceptance ~0.22μ/p at ε_T < 0.03m
- ~0.12μ/p at ε_T < 0.015m
Same geometry – Be Windows

- Replace 150 A gas with 0.65cm thick Be windows on cavities
- Similar dynamics as H₂ but
- **Much worse** Study 2A performance (?)
- Transverse emittance cooling: 0.019 → 0.0115
- Muons within Study 2A acceptance:
 - 0.134 μ/p (εt < 0.03)
 - 0.056 μ/p (εt < 0.015)
 - Needs reoptimization?
Try LiH Windows

- Replace 150 A gas with 1.2cm thick LiH windows on cavities
- Similar dynamics as Be but
- **Slightly better** than Be performance (?
- Transverse emittance cooling : 0.019 → 0.0102
- Muons within Study 2A acceptance:
 - **0.160 μ/p** (ε_t < 0.03)
 - **0.075 μ/p** (ε_t < 0.015)

Needs reoptimization?
Cost estimates:

- Costs of a neutrino factory (MuCOOL-322, Palmer and Zisman):

 Combining cooling and phase rotation may reduce cost by ~ 100M$
Component cost basis

Table 5: Study Ib Buncher and Phase Rotation Costs

<table>
<thead>
<tr>
<th></th>
<th>M$</th>
<th>Length</th>
<th>k$/m</th>
<th>GeV</th>
<th>k$/GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buncher</td>
<td>44.84</td>
<td>49.25</td>
<td></td>
<td>.12</td>
<td></td>
</tr>
<tr>
<td>Conventional</td>
<td>5.71</td>
<td></td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnets + PS</td>
<td>20.16</td>
<td>115x3.59=409</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryo</td>
<td>0.37</td>
<td>2.1x3.59=7.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum</td>
<td>2.17</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 MHz RF 9 MV/m</td>
<td>4.29</td>
<td>.12</td>
<td>20x(16.1/9)=36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 MHz PS</td>
<td>8.05</td>
<td>.12</td>
<td>120x(9/16.1)=67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td>4.09</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Rotation</td>
<td>84.52</td>
<td>56.25</td>
<td>0.469</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional</td>
<td>3.69</td>
<td>65.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnets + PS</td>
<td>23.00</td>
<td>115x3.59=409</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryo</td>
<td>0.42</td>
<td>2.1x3.59=7.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vac</td>
<td>0.96</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 MHz RF 12.5 MV/m</td>
<td>12.1</td>
<td>.469</td>
<td>20x(16.1/12.5)=25.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 MHz PS</td>
<td>43.70</td>
<td>.469</td>
<td>120x(12.5/16.1)=93.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td>0.65</td>
<td>11.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scaling
- length
- length x $(BR^2)^{0.577}$
- length V/\mathcal{E}
- length x $(BR^2)^{0.577}$
- length V/\mathcal{E}
- length V/\mathcal{E}
- length V/\mathcal{E}
Cost impact of Gas cavities

- Removes 80m cooling section (-185 M$)

- Increase V_{rf}' from 12.5 to 20 or 24 MV/m
 - Power supply cost $\propto V'^2$ (?)
 - 44 M$ \rightarrow 107M or 155M

- Magnets: 2T \rightarrow 2.5T Alternating Solenoids
 - 23 M$ \rightarrow 26.2$ M$

- Costs due to vacuum \rightarrow gas-filled cavities (?)

- Total change:
 - Cost decreases by 110 M$ to 62 M$ (?)
Summary

• High-frequency Buncher and $\phi-\delta E$ Rotator (v-Factory)
 • Variations (Poklonskiy may help),
 • Shorter systems ??
 • Other frequencies ?

• Gas-filled rf cavities
 • Higher gradient??
 • Optimize V'
 • Cool in buncher rotator

To do:
• Optimizations, Best Scenario, cost/performance ...
Motivation ...

Um... why are you here?

Originally I was seduced by the smell of your freshly brewed coffee and tempting pastries.

But now I'm all about cross-charging my time to your project.

© Scott Adams, Inc./Dist. by UFS, Inc.