"Shielding" Demonstration in a Simplified RFOFO Cell

Amit Klier
UC Riverside

Outline

The Guggenheim RFOFO (a reminder)

The Simplified RFOFO cell

"Shielding" results from Poisson-Superfish

The idea: change the geometry

Turn this \

into this →

Injection/extraction – not a problem! Less heating of the absorbers Tapering possible – more efficient cooling

BUT

Massive, expensive Magnetic shielding may be necessary

Some geometric manipulations

Results

KEK, January 26 2006

The problem

- The geometric manipulations I did are nice as an exercise, but:
 - Not Maxwellian
 - Influence of adjacent cells (above, below) not taken into account
- For a complete simulation:
 - Simulate the actual geometry
 - Try to shield the "rings"

Moving forward in small steps

- First small step was to simulate "shielding" in a very simplified model cell (presented here)
- Next steps will include a full simulation of a "Guggenheim" without any shielding
- Next: more realistic shielding, forces, etc.

The simplified RFOFO cell

The RFOFO cell:

Simplified version:

Cancel solenoid tilting
 → cylindrical symmetry
 Cut in half (at field flip)

Boundary conditions:

$$B_z = 0$$
 at edges

$$B_{r} = 0 \text{ at } r = 0$$

"Shielding":

$$\mathbf{B} \perp \text{surface (i.e. } \mathbf{B}_{z} = 0)$$

at
$$r = R_{shield}$$

Fields from Poisson-Superfish:

Simplified RFOFO Solenoid, no shielding on shielding

Shielding at r = 1.5 m

Shielding at r = 1.2 m

Shielding at r = 1.0 m

Back to no shielding

Strength of B field at r = 0

For the comparison
I normalized the currents
to match Bz maximum
at r = 0 without shielding

Shielding	Current (A/mm²)
none	53.00
1.5 m	51.66
1.2 m	48.18
1.0 m	42.47

page 14 of 18

A. Klier - RFOFO Guggenheim

KEK, January 26 2006

Comparing no shielding and "worst case" (normalized) at r = 0

A. Klier - RFOFO Guggenheim

KEK, January 26 2006

Comparing no shielding and "worst case" (norm.) at r = 10 cm

A. Klier - RFOFO Guggenheim

KEK, January 26 2006

Comparing no shielding and "worst case" (norm.) at r = 20 cm

A. Klier - RFOFO Guggenheim

KEK, January 26 2006

Conclusion

- Shielding affects the magnetic field very little around the beam
- This demonstration is only the beginning