

ISS Comparison of Schemes

R. B. Palmer (BNL) CERN September 2005

Subjects I will discuss

- 1. RF Systems
- 2. Pion Production
- 3. Longitudinal Capture
- 4. Transverse Capture and Cooling
- 5. Performance by muons/initial ^pions
- 6. Performance by muon decays per year

RF Frequencies and Systems Japan ≈ **5 MHZ**

$US \approx 200$ **MHz**

What is best RF frequency ?

Effect of Magnetic Fields A serious assumption in our Studies

• **Maximum Gradient vs, Local Fields**

Assuming max gradient $\mathcal{E}~\propto~\sqrt{\mathrm{f}}$ for all Fields

- S2a (and the CERN) specified Fields will not be attainable
- Would require redesign of lattices
- Not ^a problem for Japan Scheme
- Importance of Tests at Fermi MTA, and CERN ?

Method to Compare performances

- Study Muons out per Initial Pion avoid uncertainties in production
- \bullet "Initial Pions" defined to be at >1 m in capture channel
- Assume orthoganality between transverse and longitudinal phase spaces

$$
\eta_{\rm front-end} = \eta_{\parallel} \quad \eta_{\perp}
$$

$$
\frac{Muons}{Pions} = \eta_{front-end} \quad \eta_{accel}
$$

- \bullet Include decay losses in phase rotation in η_\parallel
- \bullet Include decay losses in cooling in η_\perp
- \bullet Estimate η_\parallel from published information
- \bullet Estmate η_\perp without cooling from my simulations
- \bullet Estmate η_\perp with cooling from published $\eta_{\rm front-end}$ and η_\parallel

Pion Capture Methods All use 20 T solenoid except CERN Horn

Channel transverse acceptances all very large

Pions initally captured

(number of muons for 1000 proton on the target)

• Both cases: Few lost in tapered channel

Pions Captured All use Mercury

9

Pi+ production .05 to 8 GeV Hg targets, Solenoid capture, 1m down

• FLUKA Production at 2.2 GeV Anomalous

Compare with different Production Models

Longitudinal Capture Phase Space Problem is to match initial muons into RF bucket

 \bullet Initial Longitudinal Acceptance A_\parallel of all muons: $-A$ \parallel = $=$ $\beta\gamma$ Δ_E $\frac{\Delta E}{E}$ $c\Delta_t$ σ_t from decay \approx 3 nsec, $\ \Delta t = 2 \ \sigma_t \quad \ \Delta \mathsf{E} / \mathsf{E}{=}{100} \%$, and $\beta \gamma = 25$

 ϵ_{\parallel} = 4(m) = 1.3 (eV sec)

- Japan and US have enough acceptance to capture entire production
- CERN lacks longitudinal acceptance
- To best match into bucket requires "Phase Rotation"

Phase Rotation Schemes

Conventional with LF RF or Induction Linacs dE

Bunched Beam Rotation with ²⁰⁰ MHz RF (Neuffer) dE

- RF frequency must vary along bunching channel (high mom. bunches move faster than low)
- Higher freq RF is cheaper than Induction Linacs
- Bunched Beam method captures both signs in interleaved bunches

Phase Rotation Parameters

- Japan couples directly into first FFAG's RF bucket
- CERN rotates with 40 MHz RF

• US Uses Bunched Beam Rotation

100 ^m drift, 40 ^m buncher, 54 ^m rotator

Phase Rotation

phi (deg at 40 MHz) vs energy (MeV)

MeV

Longitudinal Capture Efficiencies η

- Rotation could help Japan scheme e.g. in linear channel with large dp/p
- US Schemes are also inefficient possibly amplitude-velocity effects
- CERN should rotate to multiple bunches

Transverse Acceptance (η_{\perp}) **if no** cooling Assume trans momentum distributions same for all ^p energies (true at high E) Use 24 GeV MARS with mercury

If no cooling

- 9.8 % for CERN (15 ^pⁱ mm)
- \bullet 18 $\%$ for Japan (30 pi mm, .15-.45)
- ²⁵ % for US (300 ^pⁱ mm, .05-.3)

- Less accepted at higher total momenta
- Average transverse momenta must be rising

Transverse Acceptance (η_{\perp}) **with Cooling**

 \bullet Use published $\eta_{\mathrm{front-end}}$ and above η_{\perp}

Cooling Japan Cooling with hydrogen gas in first FFAG

If acceptance of this ring not greater than later rings then there is no gain and lowest mom ring is hardest to ge^t large transverse acceptance

Could lower cost of later rings

CERN

US Feasibility Studies

Cooling Performances Japan

CERN

US

Over All Performance

Due to uncertainty in pion production , look at muons per pion

• Parentheses cover numbers deduced by me

- 1. $0.3/(50 \text{ GeV} \times 2.0)$, 2.0 from sum of pis vs mom plot
- 2. from nf34, nf20 gives ^a somewhat higher number
- 3. Matching loss not included since no such loss in other examples included

Red is for no cooling into 30 ^pi mm

Notes

- \bullet CERN's gain from cooling $(6.25\,\times)$ is best FS2: 3 \times S2a: 1.7 \times)
- \bullet Japan's efficiency \approx S2a efficiency without cooling, but S2a has 2 signs and cooling giving \times 4.5
- CERN's poor performance mainly due to poor longitudinal efficiency as expected from small longitudinal acceptance

Multiply by number of signs

Red is for no cooling into 30 ^pi mm

Muon decays per year towards detector

• With ⁴ MW proton power and 300% straight over circumference

 \bullet Assume pion per proton $=$.33 (S2a value taken arbitarily)

- \bullet Not even the S2a performance quire reaches the 10^{21} goal
- \bullet But din'nt CERN (nf20) get $1.6 \; 10^{21} \; \;$ yet here it geta only $1 \; 10^{20}$
	- **–** $-$ nf20 assumed a very high pion production
	- **–** $-$ nf34, with greater realism ?, got a litttle less
	- **–** $-$ this was the numbers into the ring, not decaying towards detector

 $1\,10^{20}$ $\approx \,$ 0.37 (pi prod) \times 0.7 (nf34/nf20) \times 0.3 $\times \,1.6\,10^{21}$ (nf20)

The best features

• In Japan's Scheme

 $-$ The use of very large accelerator/storage ring acceptance Allows reasonable performance without cooling

- In CERN's Scheme
	- Using many RF cavites before hydrogen absorbers Allows use of fewer, but longer absorbers Reduces cost Reduces effect of windows
	- $-$ Most effective cooling scheme
- In US Scheme
	- **–** Bunched Beam Phase Rotation Allows large initial longitudinal acceptance without low frequency Captures both signs

Possible improvements

- In Japan's Scheme
	- **–** Add linear Phase rotation before acceleration gain of up to ^a factor of 2
- In CERN's Scheme
	- **–** Use Bunched Beam Phase Rotation Gain up to about 5 in longitudinal capture and ge^t both signs A full order of magnitude improvement ?
- In US Scheme
	- $-$ Bunch absorbers a Ia CERN, use Hydrogen, and add cooling length Possible gain approaching 2 but expensive

Conclusions

- All designs have particular good ideas
- All designs could be improved
- The ISS is going to be very useful