

Study 2a Costing

R. B. Palmer (BNL) CERN September 2005

Subjects I will discuss

- 1. Methods used for scaling from FS2 to S2b
- 2. Green Magnet cost formulae
- 3. Palmer/Berg magne^t cost algorithm
- 4. Other costing used for FFAG costs
- 5. Table of S2b costs
- 6. Conclusion

A magne^t cost formula is no substitute to designing and costing ^a needed magnet, but there is still use for ^a formula for optimizing machine designs prior to this stage. For this purpose, it is important that the dependences on field, length and aperture be as reasonable as possible.

Method

Green Solenoid Cost Algorithms

including factor of 1.34 for 12 years inflation at 2.5%

Green1Solenoid (M\$) = 1.34×0.52 (B²

 $\pi \rm R^2$ L $)\cdot$ 662 Green2 Solenoid (M\$) = 1.34×0.87 (B π R² L)^{.577}

Advances in Cryo Eng. 37, Feb 1992

- \bullet The fit for Green2 is better, so I will only use only $\#2$
- Fits are for all magnets, but looks reasonable for Dipoles only

Reduction of Cost with Quantity

 \bullet The Green formula $(\$\propto L^{\cdot 63})$ might imply a cost reduction for quantity:

 $\$\propto n~\times~(n)^{-.37}$

- Similar Cost reductions with quantity are well documented
- Comparing RHIC cost for 30 magnets to the cost for 300 gives ^a similar value I use:

$$
\$\propto n \times (n)^{-1/3}
$$

Compare LHC and RHIC Costs to Green Formula

Since Green's table was fitting mostly small numbers of magnets (I take an average of 3), ^I correct them for ^a comparison with RHIC and LHC:

- Agreement is reasonable for RHIC but low for the higher B LHC
- We need ^a formula with
	- **–** $-$ Similar dependence to Green for moderate B (2-5)
	- **–** $-$ Steeper dependence at higher B, and
	- $-$ Costs that remain finite as B $\rightarrow 0$
	- $-$ Reflects known finite "unit" or "end" costs for zero length magnets, and
	- **–** $-$ Costs that go to a finite limit as their radius goes to zero

Palmer/Berg Algorithm for Dipole and Quadrupole Magnet Costs

 $M\$ _{Palmer} = $(100 + 17 B^{1.5}) (R + 0.002B) (L + 45R)$ For quads: $\quad B = (R+0.002|GR|)\,\,|G|$

- The zero field floor is reasonable and allows low field agreemen^t with Green
- \bullet The factor 0.002 B reflects a finite cost even as $R\rightarrow 0$
- The factor ⁴⁵ ^R reflects known "unit" (or "end") magne^t costs
- Constants obtined by an approximate fit to four "known" magne^t costs
- "Willen" is ^a minimum cost design costed using RHIC experience

1 Costs corrected for inflation of 2.5% for 11 years $= 1.31$

Cost vs field for one dimension of magnet

Combined Function magnets

- Assume the use of Japan style assymetric combined function magnets
- Thicness of conductor determined by maximum field
- Amount of conductor is reduced for moderate gradients

Define relative Dipole D and Quadrupole Q charachters $(D+Q=1)$

$$
D = \frac{|Bmax + Bmin|}{2|Bmax|} \qquad Q = \frac{|Bmax - Bmin|}{2|Bmax|}
$$

Cost taken to be proportional to relative amount of conductor

Other costs used for FFAG costing 1) Linear Costs

2) SC Cavities

- RF power and cryogenics same as Study-2
- \bullet SC cavities 2 \times Study-2 after discussion with Padamsee

3) Cu Cavities

- \bullet assuming 125 k $\$/$ 75 cm cavity for open cavity, about half of study-2 with foils
- RF 25% more than study-2 allowing for less Shunt Impedance than foil cavities

RF cost vs Gradient

- \bullet SC cost min at 17 MV/m $~\approx$ 55 M\$/GeV
- \bullet Cu Cost min at 4 MV/m $~\approx$ 75 M\$/GeV $~(1.4~\times$ SC)

But Loading will require gradients ≥ 12 MV/m, where

- \bullet Cu is 130 M\$/m $(2.4 \times$ SC)
- But, to keep B low, SC requires an approximately 2 ^m straight for ^a single 75 cm cavity

RLA & FFAG Costs Use formula to compare Nu Factory RLA and FFAG accelerators $\begin{bmatrix}\n\text{Q} & \text{Q} & \text{Q} \\
\text{Q} & \text{Q} & \text{Q} & \text{Q} \\
\text{$ **RLA 1-5 RLA 2.5-20** 0 10 20 30 40 **Triplet 5-10 Triplet 10-20**

- \bullet Little differences between Green 1, Green 2, and Palmer/Berg
- But differences in cost vs B are effecting opptimization
- In any case, for E>5 GeV, FFAG's are cheaper than RLAs
- The FFAG cost per GeV falls steeply with Energy Note significance for E>20 GeV
- Difference in FS2 RLA estimates need reconciliation

A possible expalantion is the use of differents magnets for each arc, thus reducing quantity discount, where FS2 may have used one or only ^a few different types

Study 2a Costs

Conclusion

- This Study 2b cost is about 65% of FS2.
- This cost, for the same performance, should come down, because systems, other than the FFAGs, have not been cost opptimized:
	- **–** $-$ Linac apertures and cell lengths
	- **–** RLA number of turns and linac lattice
	- **–**Amount of cooling vs. acceleration aperture
	- $-$ Phase Rotation parameters
- We need to apply an extended version of the algorithm to all S2b systems
- We need to apply ^a further extended version of the algorithm to other designs This must be done judiciously, it will not be easy, but we must try