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This document is a preliminary report on efforts to fit the field of a planned Brookhaven
dipole using general surface methods. Background for this method is provided in the at-
tached draft Chapter 19 of the book Lie Methods for Nonlinear Dynamics with Applications
to Accelerator Physics. All of what currently exists of the book can be downloaded from
the Web site http://www.physics.umd.edu/dsat/

1 Description of Magnet

The attached Graphics 1 and 2 show figures provided by Brookhaven that describe the
dipole. The first graphic shows a top view, and the second a perspective view. The
magnet is a sector magnet (the body is bent) but the pole faces are rotated so that the
magnet is parallel faced. Thus, apart from a much smaller bend angle, the geometry of the
planned Brookhaven dipole is analogous to that of the dipoles in the Los Alamos Proton
Storage Ring.

2 Brookhaven Field Data

Based on the use of Opera 3D, Brookhaven provided data on a grid with

x ∈ [−0.06, 0.06], y ∈ [−0.016, 0.016], z ∈ [−1.8, 1.8] (1)

and spacing
hx = hy = hz = .002 (2)

Here all quantities are in meters. Since surface methods for general geometries require
knowledge of both the field B and the scalar potential ψ, all of these data were provided
on the grid.

Upon inspection of the Brookhaven data, the values of B and ψ appeared to be incon-
sistent because numerical differentiation of the ψ data showed that

B 6= −∇ψ. (3)
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Here the required numerical differentiation was carried out by making a 3D spline fit to
ψ and then differentiating this fit. The attached Graphic 3 shows the vertical field By as
a function of z along the line (x, y) = (0, .002), and the y component of −∇ψ along the
same line. (This line is one grid spacing hy above the z axis.) Also shown is the result of
renormalizing ψ by a constant multiplicative factor c. Evidently By and the y component of
the renormalized −∇ψ can be brought into near agreement by giving c the value c ' (4/3).
The same was found to be true for the two other components of B and −∇ψ. Therefore,
for future use, ψ was renormalized by a factor of c at all mesh points, with c determined
by requiring an optimum agreement for the case of Graphic 3. This matter needs to be
explored by further consultation with Brookhaven.

We also note, en passant, that By along the z axis, which is essentially what is shown in
Graphic 3, changes slope (as one enters the left face of the magnet) at the points z ' −1.25
and z ' −1.15, and then takes on a nearly constant value beyond z ' −1 . Inspection
of Graphic 2 show that it appears to contain a multicolored “ribbon” that begins in the
midplane y = 0, then swoops upward to pass through the top coil, and eventually hovers
over the top of the yoke. Perhaps this ribbon is meant to illustrate the magnitude of
By in the midplane. If so, note that By changes most rapidly as one goes from outside
the coil to inside the coil, as one might expect. Thus, with this interpretation, there is a
correspondence between the features of Graphics 2 and 3. Finally we note that Graphic 2
also appears to depict some portion of the Opera calculational grid in the midplane.

3 Fit of Interior Data Using Data on the Surface of a Bent
Box

A bent box with straight legs at both ends, having the general geometry depicted in Figure
19.1.1 of Lie Methods · · · , was selected to provide a fitting surface. Here is a description
of the box and legs: The box is essentially straight, with a bending angle of 0.6 degrees.
The length of the arc segment = 3.22 m, and the length of each straight leg = 0.17 m. The
width of the bent box and the straight legs = 0.1 m. The height of the box and legs =
0.024 m. That is, y = ±.012 m for points on the top and bottom surfaces of the bent box
and the straight legs.

The Brookhaven grid field data B were interpolated onto a large number of selected
points (called integration points) on the fitting surface and Bn, the normal component of
B, was computed and stored for each integration point. The Brookhaven grid renormalized
potential data, again called ψ, were also interpolated to these same selected integration
points and stored. From this surface data (Bn and ψ at the integration points) it is possible
to compute the vector potential A and all its spatial derivatives at any interior point, as
is needed to compute a design trajectory and the transfer map M about this trajectory.

How well does this fitting procedure work? One test of the procedure is to compare
interior fields Bs computed from the surface data (using B = ∇×A) with the Brookhaven-
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provided fields Bbg at the interior Brookhaven grid points. (Observe that the computation
of Bs makes no use of the interior Bbg data.) The attached Graphics 4 through 6 compare
the components of Bs and Bbg as a function of z along the line (x, y) = (0, .002). The
red points are components of the Brookhaven Bbg data at the grid points along the line,
and the green curves are the components of Bs. Evidently the agreement is generally very
good. The one small discrepancy is in the peak values of Bx, but we note that these field
values are small compared to the peak value of |B| in the middle of the magnet.

We recall, for a magnet with midplane symmetry, that the field should have the property
that its x and z components vanish in the midplane,

Bx(x, 0, z) = Bz(x, 0, z) = 0. (4)

We have verified that (4) does indeed hold for the Brookhaven data. However, consistent
with the results shown in the Graphics 4 and 6, the x and z components need not vanish
outside the midplane. Indeed, the results of Graphic 6 are consistent with what would be
expected for a field that bows outward at the ends of the magnet.

The matter of the small observed discrepancy requires more study, and perhaps better
data from Brookhaven. We note that the success of the comparison that we have been
making depends on both the proper implementation of the surface method and the re-
quirement that the Brookhaven data well satisfy the Maxwell equations (including, near
the surface, the relation B = −∇ψ).

The calculations for the Graphics 4 through 6, and the calculation of A and its x and
y derivatives through order 4 as described in the next section, required approximately 24
hours using a single processor at NERSC. (We remark that the effort required to compute
a design trajectory and the transfer map M through third order about this trajectory is
essentially equivalent to the effort expended in this current computation.) Due to the small
height of the box, a great number of integration points is needed to resolve the behavior of
the kernels Gn and Gt on the integration surface. Considerably more computation would
be required to make comparisons at grid points closer to the fitting surface, because then
an even greater number of integration points would be needed to resolve the behavior of the
kernels on the integration surface. However, we did carry out one such calculation (with
a very large number of integration points) for the grid point (x, y, z) = (0, 0.01, 0.072) m
and found agreement between Bs

y and Bbg
y to within 5 parts in 104. Finally, we note that

the surface integration calculations can readily be done in parallel, and therefore future
numerical calculations should ideally be done with a multiprocessor parallel computer.

4 Computation of the Vector Potential

The computed interior field Bs described in the previous section was obtained using Bs =
∇×A, where A was computed by integrating the surface data Bn and ψ against the kernels
Gn and Gt, respectively. The attached Graphics 7 through 9 illustrate the computed
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components of A as a function of z along the line (x, y) = (0, .002). The components
Ax and Ay decay rather slowly in z. Since we would like to employ reference planes for
which canonical and mechanical momenta are essentially equal, it may be necessary to
integrate over a larger interval in z to assure that Ax and Ay are sufficiently small at the
endpoints. This circumstance suggests that a set of data over a larger range of z values
may be necessary to produce a final map computation.

In a similar way, the Taylor coefficients for each component of A can be obtained,
through any desired degree, by integrating the surface data Bn and ψ against the known
spatial derivatives of the kernels Gn and Gt. For example, the attached Graphic 10 illus-
trates the coefficient of the monomial x2y2 appearing in the expansion of Az, taken as a
function of z along the line (x, y) = (0, .002).

5 Conclusion

Although much remains to be done, substantial work has been accomplished on the use of
general surfaces with very promising preliminary results.
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