
Chapter 19

Realistic Transfer Maps for Curved
Beam-Line Elements

19.1 Introduction

Surface methods based on the use of cylinders are appropriate for straight beam-line elements
or for bent elements with small sagitta. However, cylinders cannot be employed for elements
with large sagitta, such as dipoles, where no straight cylinder would fit within the aperture.
For such cases more complicated surfaces are required. For example, Figure 1.1 shows a
bent box with straight ends. For use in the dipole case, the bent part of the box would lie
within the body of the dipole, and the straight ends would enclose the fringe-field regions.

Figure 19.1.1: A bent box with straight ends.

But now there is a complication: The cylinder methods succeeded because Laplace’s
equation is separable in circular, elliptical, and rectangular cylinder coordinates. Conse-
quently, we were able to find a kernel that related the interior vector potential to the normal
component of the surface magnetic field. However, there is no bent coordinate system with
straight ends for which Laplace’s equation is separable.
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1190 19. REALISTIC TRANSFER MAPS FOR CURVED BEAM-LINE ELEMENTS

This problem can in principle be overcome if both the normal component of the magnetic
field and the scalar potential for the magnetic field are known on the surface. Such data
are in fact provided on a mesh by some 3-dimensional field solvers, and these data can be
interpolated onto the surface.

Let V be some volume in three-dimensional space bounded by a surface S. Suppose that
the magnetic field B(r) is source free when r is within V . That is, for r within V , B(r)
satisfies the requirements

∇ · B(r) = 0, (19.1.1)

∇× B(r) = 0. (19.1.2)

This will be the case for the magnetic field in an evacuated beam pipe. For a Hamiltonian
treatment of trajectories, we need a vector potential A(r) such that

B(r) = ∇× A(r). (19.1.3)

Let n′(r′) be the outward normal to S at the point r′ ∈ S. Then the normal component of
B on S is given by the definition

Bn(r′) = n′(r′) · B(r′). (19.1.4)

Also, let ψ(r′) be the value of the magnetic scalar potential at the point r′ ∈ S. It satisfies
the relation

B(r′) = ∇′ψ(r′). (19.1.5)

Then, with the aid of the vector potential for Dirac magnetic monopoles and Helmholtz’s
theorem, it can be shown that a suitable interior vector potential A(r) for r within V is
given by the relation

A(r) = An(r) + At(r) (19.1.6)

with

An(r) =

∫

S

dS ′ Bn(r′)Gn(r, r′) (19.1.7)

and

At(r) =

∫

S

dS ′ ψ(r′)Gt(r, r′). (19.1.8)

Moreover, the constituents of A(r), and hence A(r) itself, satisfy the Coulomb gauge con-
dition,

∇ · An(r) = ∇ · At(r) = ∇ · A(r) = 0. (19.1.9)

Here the kernels Gn and Gt are given by the relations

Gn(r, r′) = {n′(r′) × (r − r′)}/{4π|r − r′|[|r − r′| − n′(r′) · (r − r′)]}, (19.1.10)

Gt(r, r′) = [n′(r′) × (r − r′)]/[4π|r − r′|3]. (19.1.11)

A detailed exposition of this method, including expected accuracy and insensitivity to
noise in the surface data, is the subject of this chapter. Thus, taken together, Chapters
13 through 18 and this chapter are intended to provide an extensive description of, and
associated robust numerical algorithms for, the computation of transfer maps, including



19.2. MATHEMATICAL TOOLS 1191

all fringe-field and higher-order multipole effects, for realistic beam-line elements having
arbitrary geometry.

Section 19.2 describes the the mathematical tools required to treat general geometries.
These tools are Dirac’s magnetic monopole vector potential and Helmloltz’s theorem. Section
19.3 derives the relations (1.3) through (1.10) and describes the properties of the kernels
(1.9) and (1.10). The remaining sections provide a numerical benchmark, study smoothing
and insensitivity to errors, and apply the method to a storage-ring dipole.

Before continuing on, we pause to advertise some of the virtues of what can be achieved
with the use of general surface methods.

• The constituents An(r) and At(r) of A(r), and hence A(r) itself, are analytic func-
tions of r for r within V , even when there are errors in the surface fields Bn and ψ,
and no matter how poorly the integrals (1.7) and (1.8) are evaluated.

• The Maxwell equations for B(r), and the Coulomb gauge condition for A(r) and its
constituents, are satisfied exactly even when there are errors in the surface fields Bn

and ψ, and no matter how poorly the integrals (1.7) and (1.8) are evaluated.

• The kernels Gn and Gt are smoothing. Consequently, the A(r) given by (1.6) through
(1.8) is relatively insensitive to noise in the surface fields Bn and ψ.

We hasten to add that the first two items above should not be taken to mean that there is
no need to take care to evaluate integrals well. They just indicate that the worst disasters
have been avoided. Subsequently we will learn that the kernels Gn and Gt, and their r
derivatives, can be strongly peaked in r′ when r is near S. To obtain accurate results, this
behavior of the kernels must be taken into account when integrating, with respect to r′, over
the surface S.

19.2 Mathematical Tools

19.2.1 Electric Dirac Strings

In this subsection we will motivate the subject of magnetic Dirac strings by treating the
simpler electric case. Suppose E(r) is a vector field that obeys the equations

∇× E = 0, (19.2.1)

∇ · E = ρ. (19.2.2)

From (2.1) we know there is a scalar potential φ such that

E = −∇φ, (19.2.3)

and from (2.2) it follows that
∇2φ = −ρ. (19.2.4)

Introduce the notation

|r − r′| = ||r − r′|| = [(x − x′)2 + (y − y′)2 + (z − z′)2]1/2. (19.2.5)
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Consider the function 1/|r − r′|. It satisfies the relation

∇2[1/|r − r′|] = −4πδ3(r − r′) (19.2.6)

where the indicated derivatives are to be taken with respect to the components of r. As-
suming that ρ(r) falls off sufficiently rapidly at infinity, it follows that a solution to (2.4) is
given by the relation

φ(r) = [1/(4π)]

∫

d3r′ρ(r′)/|r − r′|. (19.2.7)

Moreover, (2.7) is the unique solution that vanishes at infinity.
For our discussion we will need some knowledge of low-order (spherical) multipole expan-

sions, which we review briefly here. Suppose that the charge distribution ρ is nonzero only
in some volume V surrounding the point rd. (Here the subscript d stands for distribution
and will later stand for dipole.) Then (2.7) becomes

φ(r) = [1/(4π)]

∫

V

d3r′ρ(r′)/|r − r′|. (19.2.8)

Suppose also that r lies outside V so that the denominator in (2.8) never vanishes. Make
the change of variables

r′ = rd + ξ (19.2.9)

so that (2.8) becomes

φ(r) = [1/(4π)]

∫

V0

d3ξ ρ(rd + ξ)/|(r − rd) − ξ| (19.2.10)

where V0 is a volume surrounding the origin. Under the assumption that r /∈ V , the
denominator factor in (2.10) can be expanded as a power series in the components of ξ,

1/|(r − rd) − ξ| = [1/|r − rd|][1 + ξ · (r − rd)/|r − rd|2 + O(ξ2)]. (19.2.11)

Put this expansion into the integral (2.10) to yield the result

φ(r) = [1/(4π)][1/|r − rd|]
∫

V0

d3ξ ρ(rd + ξ)

+[1/(4π)][1/|r − rd|3](r − rd) ·
∫

V0

d3ξ ξ ρ(rd + ξ) + O(ξ2). (19.2.12)

The integrals in (2.12) can be manipulated to bring them to the forms
∫

V0

d3ξ ρ(rd + ξ) =

∫

V

d3r′ ρ(r′) = Q, (19.2.13)

∫

V0

d3ξ ξ ρ(rd + ξ) =

∫

V

d3r′ (r′ − rd) ρ(r
′) = pd. (19.2.14)

Here Q, the total charge in V , is the monopole moment, and pd is the dipole moment (with
respect to the point rd) of the charge distribution in V . Thus, we find that

φ(r) = [Q/(4π)][1/|r − rd|] + [1/(4π)][pd · (r − rd)]/|r − rd|3 + O(ξ2). (19.2.15)
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That is, the potential arising from a charge distribution, at a point r outside the distribution,
is a sum of monopole, dipole, and higher-order multipole contributions.

We recall that the prototypical example of a dipole consists of two opposite charges ±q
separated by a distance 2ε in the limit that ε → 0 and q → ∞ in such a way that the
product 2qε remains constant. For example, suppose a charge +q is placed at the location
rd + ε and a charge −q is placed at the location rd − ε. Then we find that the potential due
to this two-charge combination is given by the relation

φ(r, rd) = [1/(4π)][q/|r − (rd + ε)| − q/|r − (rd − ε)|]. (19.2.16)

Expansion of (2.16) in powers of ε gives the result

φ(r, rd) = [1/(4π)](2qε) · (r − rd)/|r − rd|3 + O(qε2). (19.2.17)

Now let ε → 0 and q → ∞ in such a way that

2qε → pd. (19.2.18)

In this limit (2.17) becomes

φd(r, rd) = [1/(4π)][pd · (r − rd)]/|r − rd|3, (19.2.19)

in agreement with the second term in (2.15). We note, with the convention q > 0, that the
dipole moment vector pd points from the location of −q to the location of +q.

We also note, for future use, that the field Ed(r, rd) at the point r arising from a dipole
at the point rd (with r '= rd) is given by the relation

Ed(r, rd) = −∇φd(r, rd)

= −[1/(4π)][pd/|r − rd|3] + [3/(4π)](r − rd)[pd · (r − rd)]/|r − rd|5.
(19.2.20)

We will now use the expression for the potential of a dipole, namely (2.19), to carry out
an instructive construction and calculation. Suppose rA and rB are the locations of two
points A and B. Imagine these two points to be joined by a line (path, string) L starting at
rA and ending at rB. See Figure 2.1. Divide the path into N segments, each of length ∆s,
and place a dipole of magnitude g∆s at the center of each segment with the dipole moment
vector pointing along the path at each point. Here g is some constant. Thus, the dipole
moment ∆pd of each segment is given by the expression

∆pd = g∆s(∆r/|∆r|) = g∆r (19.2.21)

since |∆r| = ∆s. Let us compute the potential φs(r) produced by this string of dipoles. It
will be the sum of the potentials of the individual dipoles. In the limit ∆s → 0 and N → ∞
it is given by the integral

φs(r) = [1/(4π)]

∫

L

dpd · (r − rd)/|r − rd|3

= [g/(4π)]

∫ rB

rA

drd · (r − rd)/|r − rd|3. (19.2.22)
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Figure 19.2.1: (Place Holder) A path L from the point A to the point B. Dipoles are laid
out and aligned along the path to form a string.

Can the integral (2.22) be evaluated? Recall the identity

∇d(1/|r − rd|) = (r − rd)/|r − rd|3 (19.2.23)

where ∇d denotes differentiation with respect to the components of rd. This identity may
be employed in (2.22) to yield the result

φs(r) = [g/(4π)]

∫ rB

rA

drd · (r − rd)/|r − rd|3

= [g/(4π)]

∫ rB

rA

drd · [∇d(1/|r − rd|)]

= [g/(4π)]{[(1/|r − rB|)] − [(1/|r − rA|)]}. (19.2.24)

We see that the potential φs(r) resulting from a string of dipoles is the same as the potential
produced by a charge −g located at rA and a charge +g located at rB. This mathematically
derived result is also intuitive because we expect, for a string of dipoles arrayed head-to-tail,
that adjacent head-tail pairs would cancel so all that would be left would be the negative
initial tail and the final positive head.

Note that, as it stands, (2.22) is undefined for points r ∈ L. However, since the integrand
in (2.22) is a perfect differential, see (2.23), the path can be deformed at will to avoid any
possible vanishings of the denominator in (2.22) without changing the value of the integral.
Indeed, (2.24) shows that φs(r) depends only on the endpoints of the path, and is otherwise
path independent.

19.2.2 Magnetic Dirac Strings

In analogy to the work of the previous subsection, this subsection will describe calculations
for the complementary case of a vector field B(r) that obeys the equations

∇× B = J , (19.2.25)
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∇ · B = 0. (19.2.26)

Note, in order for (2.25) to make sense, we must require that

∇ · J = ∇ · (∇× B) = 0. (19.2.27)

(Recall that the divergence of a curl vanishes.)
In the case of (2.25) and (2.26) it is often assumed that there is a vector potential A(r)

such that

B = ∇× A (19.2.28)

because (2.26) will then be satisfied automatically. Let us verify that this Ansatz is possible
by construction. Substitution of (2.28) into (2.25) yields the hypothesis

∇× (∇× A) = J . (19.2.29)

Recall the vector identity

∇× (∇× A) = ∇(∇ · A) −∇2A (19.2.30)

where here it is essential that Cartesian components be employed. Let us make the further
Coulomb gauge assumption

∇ · A = 0. (19.2.31)

In this circumstance (2.30) becomes

∇2A = −J . (19.2.32)

Because of (2.6), equation (2.32) has the immediate solution

A(r) = [1/(4π)]

∫

d3r′ J(r′)/|r − r′|. (19.2.33)

Moreover, (2.33) is the unique solution that vanishes at infinity. But wait, we must also
verify that (2.33) also satisfies (2.31). It does, as you will have the pleasure of showing in
Exercise 2.4.

Next suppose that the current distribution J is nonzero only in some volume V sur-
rounding the point rd. Then (2.33) becomes

A(r) = [1/(4π)]

∫

V

d3r′ J(r′)/|r − r′|. (19.2.34)

Suppose also that r lies outside V so that the denominator in (2.34) never vanishes. Make
the change of variables (2.9) so that (2.34) can be rewritten in the form

A(r) = [1/(4π)]

∫

V0

d3ξ J(rd + ξ)/|(r − rd) − ξ| (19.2.35)
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where V0 is a volume surrounding the origin. As before, make the expansion (2.11) so that
(2.35) can be written in the form

A(r) = [1/(4π)][1/|r − rd|]
∫

V0

d3ξ J(rd + ξ)

+[1/(4π)][1/|r − rd|3]
∫

V0

d3ξ [(r − rd) · ξ] J(rd + ξ) + O(ξ2).

(19.2.36)

The integrals in (2.36) can again be manipulated to bring them to more convenient forms.
For the first integral we find that

∫

V0

d3ξ J(rd + ξ) =

∫

V

d3r′ J(r′) = 0. (19.2.37)

Here use has been made of (2.27). See Exercise 2.5. The second integral can be brought to
the form

∫

V0

d3ξ [(r − rd) · ξ] J(rd + ξ) =

∫

V

d3r′ [(r − rd) · (r′ − rd)] J(r′)

= md × (r − rd). (19.2.38)

Here use has again been made of (2.27), and md is the magnetic dipole moment defined by
the integral

md = (1/2)

∫

V

d3r′ [(r′ − rd) × J(r′)]. (19.2.39)

See Exercise 2.6. Thus, we find that

A(r) = Ad(r, rd) + O(ξ2) (19.2.40)

where
Ad(r, rd) = [1/(4π)][md × (r − rd)]/|r − rd|3. (19.2.41)

We see that the vector potential arising from a current distribution, at a point r outside
the distribution, is a sum of dipole and higher order multipole contributions. Unlike the
electric case, there is no monopole contribution. We also remark that A(r, rd) satisfies the
Coulomb gauge condition (2.31),

∇ · A(r, rd) = 0. (19.2.42)

See Exercise 2.7.
We recall that the prototypical example of a magnetic dipole consists of a small circular

and planar ring of radius R, surrounding an area A and carrying a current I, in the limit
that A → 0 and I → ∞ in such a way that the product AI remains constant. For example,
suppose the ring is placed in the x, y plane and centered around the origin. Suppose also that
the current I circulates in the counterclockwise direction when viewed from above (looking
down from positive z toward the origin). Then we find that (2.39) takes the form

md = (1/2)

∫

V

d3r′ [r′ × J(r′)] = AIez. (19.2.43)
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For the field Bd(r, rd) at the point r arising from a magnetic dipole at the point rd

(with r '= rd) we find the result

Bd(r, rd) = ∇× Ad(r, rd)

= −[1/(4π)][md/|r − rd|3] + [3/(4π)](r − rd)[md · (r − rd)]/|r − rd|5.
(19.2.44)

Note that (2.20) and (2.44) agree if pd = md. Thus, we have the key relation

−∇φd(r, rd) = ∇× Ad(r, rd) when pd = md and r '= rd. (19.2.45)

In analogy to what was done in the previous subsection for a string of electric dipoles,
let us compute the vector potential As(r) arising from a string of magnetic dipoles. Again
we will initially divide the path into N equal segments, and the magnetic dipole moment of
each segment will be given by the relation

∆md = g∆s(∆r/|∆r|) = g∆r. (19.2.46)

In the limit ∆s → 0 and N → ∞ the vector potential due to the string is given by the
integral

As(r) = [1/(4π)]

∫

L

dmd × (r − rd)/|r − rd|3

= [g/(4π)]

∫ rB

rA

drd × (r − rd)/|r − rd|3. (19.2.47)

Recall (2.41). Note that, as it stands, (2.47) is undefined for points r ∈ L. As before, the
path can be deformed to avoid any possible vanishings of the denominator. However, unlike
the electric case and as will soon be seen, so doing changes the value of As(r). We also note
that the current distribution associated with a string of magnetic dipoles (all aligned along
the string) is that of an infinitesimally thin solenoid bent into the shape of the string.

What is the nature of the magnetic field Bs(r) given by

Bs(r) = ∇× As(r)? (19.2.48)

We claim, for r /∈ L, that
∇× As(r) = −∇φs(r). (19.2.49)

We will prove this assertion shortly. Assuming it is true, the right side of (2.48) can be
evaluated easily using (2.49). In view of (2.24), there is the relation

−∇φs(r) = [g/(4π)][(r − rB)/|r − rB|3] − [g/(4π)][(r − rA)/|r − rA|3]. (19.2.50)

It follows that

Bs(r) = [g/(4π)][(r − rB)/|r − rB|3] − [g/(4π)][(r − rA)/|r − rA|3]. (19.2.51)

We see that the field Bs(r) is that produced by two magnetic monopoles, one located at rB

with strength g, and a second located at rA with strength −g.
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At this juncture two comments are in order. First, the Bs(r) given by (2.51) evidently
is not divergence free at the points rA and rB. But the Bs(r) given by (2.48) is a curl, and
we again recall the theorem that a curl is divergence free. The resolution to this apparent
paradox is that As(r) is singular for r ∈ L, and every neighborhood of the points rA and
rB contains such singular points, and therefore the conditions for the theorem are not met.
Correspondingly, (2.51) holds only for points r /∈ L.

The second comment is equally subtle. Suppose two different strings s and s′ (but with
the same endpoints) are used to compute Bs(r) and Bs′(r). Then, according to (2.51),
these fields should agree except possibly at the points for which r ∈ L and/or r ∈ L′. Thus,
we have the relation

∇× [As(r) − As′(r)] = 0 for r /∈ L and r /∈ L′. (19.2.52)

Let Σ be some surface spanning the two strings s and s′. See Figure 2.2. Three-dimensional
Euclidean space with the surface Σ excluded is still simply connected. It follows that there
is a function ψss′(r) such that

As(r) − As′(r) = ∇ψss′(r) for r /∈ Σ. (19.2.53)

That is, the vector potentials associated with two different strings (but with the same
endpoints) are related by a gauge transformation. From (2.53) we see that ψss′(r) will
be singular for both r ∈ L and r ∈ L′. It can be shown that ψss′(r) is also harmonic,

∇2ψss′(r) = 0 for r /∈ L and r /∈ L′. (19.2.54)

See Exercise 2.13.

Figure 19.2.2: (Place holder.) A surface Σ spanning the two strings s and s′.

Finally, suppose we let rB → ∞. In this limit, the first term on the right side of (2.51)
vanishes, and we have the result

Bs(r) = −[g/(4π)][(r − rA)/|r − rA|3], (19.2.55)
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which is the field of a monopole located at rA and having strength −g. Correspondingly, the
upper limit in the integral (2.47) is infinite, and the string s, commonly called a half-infinite
Dirac string, extends from rA to infinity. And the field (2.55) may be viewed as that of a
Dirac magnetic monopole. See Exercise 2.14.

For future use, there is a special class of half-infinite strings that is particularly conve-
nient. Let m be some unit vector. Consider the straight string (path) from rA to infinity
parameterized as

rd(λ) = rA + λm with λ ∈ [0,∞]. (19.2.56)

See Figure 2.3. Then, on this path, md is in the direction of m, and we also have the
relation

drd(λ) = mdλ. (19.2.57)

For this class of strings the integral (2.47) can be evaluated analytically. We begin by
rewriting (2.47) in the form

As(r; rA, m) = [g/(4π)]

∫ ∞

0

dλ m × [r − rd(λ)]/|r − rd(λ)|3. (19.2.58)

From (2.56) we see that
r − rd(λ) = r − rA − λm (19.2.59)

and therefore
m × [r − rd(λ)] = m × (r − rA). (19.2.60)

Consequently, the integral (2.58) simplifies to the form

As(r; rA, m) = [g/(4π)][m × (r − rA)]

∫ ∞

0

dλ/|r − rd(λ)|3. (19.2.61)

As shown in Exercise 2.14, the integral appearing in (2.61) can be evaluated to yield the
result

∫ ∞

0

dλ/|r − rd(λ)|3 =

∫ ∞

0

dλ/|r − rA − λm|3

= 1/{|r − rA|[|r − rA| − m · (r − rA)]}. (19.2.62)

Therefore, As(r; rA, m) takes the final explicit form

As(r; rA, m) = [g/(4π)][m × (r − rA)]/{|r − rA|[|r − rA| − m · (r − rA)]}.
(19.2.63)

It remains to be verified that (2.49) holds. Suppose that (2.19) is written in the form

φd(r, rd; |pd|, nd) = [1/(4π)][|pd|nd · (r − rd)]/|r − rd|3 (19.2.64)

where nd is the unit vector in the direction of pd. Then (2.22) takes the form

φs(r) =

∫

L

φd(r, rd; gds, drd/|drd|), (19.2.65)
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Figure 19.2.3: (Place holder.) A straight half-infinite string extending from A to infinity in
the direction m.

and therefore

−∇φs(r) =

∫

L

−∇φd(r, rd; gds, drd/|drd|). (19.2.66)

Suppose also that (2.41) is written in the form

Ad(r, rd; |md|, nd) = [1/(4π)][|md|nd × (r − rd)]/|r − rd|3. (19.2.67)

Then (2.47) takes the form

As(r) =

∫

L

Ad(r, rd; gds, drd/|drd|), (19.2.68)

and therefore

∇× As(r) =

∫

L

∇× Ad(r, rd; gds, drd/|drd|). (19.2.69)

Now compare the integrands on the right sides of (2.66) and (2.69). We see that they
have identical arguments. Consequently, by (2.45), they are equal. It follows that the left
sides of (2.66) and (2.69) are equal, and therefore (2.49) is correct.

There are still two final matters. First, (2.67) shows that As(r) is a superposition
(integration over rd) of the Ad(r, rd) and, for each Ad(r, rd), the relation (2.42) holds. It
follows that As(r) also satisfies the Coulomb gauge condition,

∇ · As(r) = 0. (19.2.70)

In particular, there is the relation

∇ · As(r; rA, m) = 0. (19.2.71)



19.2. MATHEMATICAL TOOLS 1201

Second, since As(r; rA, m), is a magnetic monopole vector potential, there is the relation

∇× As(r; rA, m) = −[g/(4π)][(r − rA)/|r − rA|3] = [g/(4π)]∇(1/|r − rA|). (19.2.72)

It follows that
∇× [∇× As(r; rA, m)] = 0. (19.2.73)

The relations (2.71) and (2.73) will be of subsequent use.

19.2.3 Helmholtz Decomposition

Suppose V is some simply connected volume in 3-dimensional space bounded by a surface
S, and suppose F (r) is some 3-dimensional vector field defined in V . Then, according to a
theorem of Helmholtz, there are scalar and vector potentials φ(r) and A(r) such that

F (r) = −∇φ(r) + ∇× A(r) (19.2.74)

for r ∈ V . Moreover, A(r) will have the property

∇ · A(r) = 0 (19.2.75)

for r ∈ V . Finally, let Let G(r, r′) be the function

G(r, r′) = 1/|r − r′|. (19.2.76)

Then, the scalar and vector potentials are given in terms of F (r), with r ∈ V , by the
relations

φ(r) = −[1/(4π)]

∫

S

dS ′ n′ · F (r′)G(r, r′) + [1/(4π)]

∫

V

d3r′ G(r, r′)∇′ · F (r′), (19.2.77)

A(r) = −[1/(4π)]

∫

S

dS ′ [n′ × G(r, r′)F (r′)] + [1/(4π)]

∫

V

d3r′ G(r, r′)∇′ × F (r′).

(19.2.78)

Here n′ is the outward normal to S at the point r′.
We will derive this result in stages. Before doing so, some remarks are in order. There

two cases of special interest. If F (r) is globally defined and falls off at infinity as fast as
1/|r|2, then we may take the surface S to infinity and find that the surface integrals vanish.
This result shows that, with suitable boundary conditions (fall off) imposed at infinity, F (r)
is completely specified in terms of its divergence and curl. That the operations of divergence
and curl are necessary and sufficient to determine F (r) is a consequence of two things: the
fact that we are working in three dimensions and certain properties of the Euclidean group
in three dimensions. See Exercise 2.20.

The second case, of special interest for our purposes, is that for which F (r) is divergence
and curl free (source free) in V ,

∇ · F (r) = 0 (19.2.79)
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and
∇× F (r) = 0 (19.2.80)

for r ∈ V . In this case, only the surface terms appear in (2.77) and (2.78), and we obtain
the results

φ(r) = −[1/(4π)]

∫

S

dS ′ n′ · F (r′)G(r, r′), (19.2.81)

A(r) = −[1/(4π)]

∫

S

dS ′ [n′ × F (r′)]G(r, r′). (19.2.82)

We will eventually apply these results to the case of a magnetic field B(r) that is assumed to
be source free within V , as in (1.1) and (1.2). We take the opportunity at this point to note
that G(r, r′) as given by (2.76), and for fixed r′, is an analytic function of the components
of r for r '= r′. It follows from the representations (2.81) and (2.82), under very mild
assumptions on the surface behavior of F (r), boundedness and continuity will do, that φ(r)
and A(r) are analytic functions of the components of r for r within V . Correspondingly,
from (2.74), F (r) must then also be analytic for r within V .

We begin the proof of Helmholtz’s theorem by noting that G(r, r′) has the properties

∇G(r, r′) = −∇′G(r, r′) = −(r − r′)/|r − r′|3, (19.2.83)

∇2G(r, r′) = (∇′)2G(r, r′) = −4πδ3(r − r′), (19.2.84)

where ∇′ denotes differentiation with respect to the components of r′. As a result of (2.84)
there is, for r ∈ V , the identity

F (r) =

∫

V

d3r′ δ3(r − r′)F (r′)

= −[1/(4π)]

∫

V

d3r′ F (r′)∇2G(r, r′)

= −[1/(4π)]∇2

∫

V

d3r′ F (r′)G(r, r′)

= −∇2H(r) (19.2.85)

where

H(r) = [1/(4π)]

∫

V

d3r′ F (r′)G(r, r′). (19.2.86)

Invoke again the vector identity

−∇2H(r) = ∇× [∇× H(r)] −∇[∇ · H(r)]. (19.2.87)

It follows that
F (r) = ∇× [∇× H(r)] −∇[∇ · H(r)], (19.2.88)

and therefore (2.74) holds with the definitions

φ(r) = ∇ · H(r), (19.2.89)

A(r) = ∇× H(r). (19.2.90)
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It remains to work out computationally useful expressions for φ(r) and A(r). Doing so
requires a flurry of vector manipulations. Begin with φ(r). According to (2.86) and (2.89)
it can be written as

φ(r) = [1/(4π)]

∫

V

d3r′ ∇ · [F (r′)G(r, r′)]. (19.2.91)

Manipulate the integrand in (2.91) to find the result

∇ · [F (r′)G(r, r′)] = F (r′) · ∇G(r, r′)] = −F (r′) · ∇′G(r, r′)]

= −∇′ · [F (r′)G(r, r′)] + G(r, r′)∇′ · F (r′). (19.2.92)

Employ this result in (2.91) to rewrite it in the form

φ(r) = [1/(4π)]

∫

V

d3r′ {−∇′ · [F (r′)G(r, r′)] + G(r, r′)∇′ · F (r′)}. (19.2.93)

Finally, use the divergence theorem to transform the first term on the right side of (2.91) to
yield the result

φ(r) = −[1/(4π)]

∫

S

dS ′ n′ · F (r′)G(r, r′) + [1/(4π)]

∫

V

d3r′ G(r, r′)∇′ · F (r′), (19.2.94)

in agreement with (2.77).
The case of A(r) requires somewhat more effort. Combining (2.86) and (2.90) gives the

result

A(r) = [1/(4π)]

∫

V

d3r′ ∇× [F (r′)G(r, r′)]. (19.2.95)

Manipulate the integrand in (2.95) to find the result

∇× [F (r′)G(r, r′)] = [∇G(r, r′)] × F (r′) = −F (r′) ×∇G(r, r′)

= F (r′) ×∇′G(r, r′). (19.2.96)

There is also the vector identity

∇′ × [F (r′)G(r, r′)] = G(r, r′)∇′ × F (r′) − F (r′) ×∇′G(r, r′). (19.2.97)

Combining (2.96) and (2.97) gives the result

∇× [F (r′)G(r, r′)] = G(r, r′)∇′ × F (r′) −∇′ × [F (r′)G(r, r′)]. (19.2.98)

Employ this result in (2.95) to rewrite it in the form

A(r) = [1/(4π)]

∫

V

d3r′ G(r, r′)∇′ × F (r′) − [1/(4π)]

∫

V

d3r′ ∇′ × [F (r′)G(r, r′)].

(19.2.99)

Now work on the second integral appearing on the right side of (2.99). Let c be any
constant vector. By the divergence theorem there is the relation

∫

V

d3r′ ∇′ · [c × G(r, r′)F (r′)] =

∫

S

dS ′ n′ · [c × G(r, r′)F (r′)]. (19.2.100)
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There is also the vector identity

n′ · [c × G(r, r′)F (r′)] = −n′ · [G(r, r′)F (r′) × c]

= −[n′ × G(r, r′)F (r′)] · c
= −c · [n′ × G(r, r′)F (r′)]. (19.2.101)

Consequently, (2.100) can be rewritten in the form
∫

V

d3r′ ∇′ · [c × G(r, r′)F (r′)] = −c ·
∫

S

dS ′ [n′ × G(r, r′)F (r′)]. (19.2.102)

Next manipulate the integrand on the left side of (2.102) to find the result

∇′ · [c × G(r, r′)F (r′)] = −∇′ · [G(r, r′)F (r′) × c]

= −{∇′ × [G(r, r′)F (r′)]} · c
= −c · {∇′ × [G(r, r′)F (r′)]}. (19.2.103)

Therefore (2.102) can be rewritten as

−c ·
∫

V

d3r′ ∇′ × [G(r, r′)F (r′)] = −c ·
∫

S

dS ′ [n′ × G(r, r′)F (r′)], (19.2.104)

from which it follows, because c is arbitrary, that
∫

V

d3r′ ∇′ × [G(r, r′)F (r′)] =

∫

S

dS ′ [n′ × G(r, r′)F (r′)]. (19.2.105)

The last step is to employ (2.105) in (2.99) to obtain the final result

A(r) = [1/(4π)]

∫

V

d3r′ G(r, r′)∇′ × F (r′) − [1/(4π)]

∫

S

dS ′ [n′ × G(r, r′)F (r′)],

(19.2.106)

in agreement with (2.78).
It still remains to be shown that, for the definitions made, ∇·A(r) = 0. Look at (2.90).

Since the divergence of a curl vanishes, when suitable smoothness conditions are met by
the functions involved, it follows that under these conditions A(r) as given by (2.90), and
therefore also by (2.106), is indeed divergence free. From (2.86) we see that the analytic
properties of H(r) are determined by those of F (r). In general H(r) will be smoother
than F (r). See Appendix F. Therefore, under mild conditions on F (r), the vector potential
A(r) will be divergence free.

Exercises

19.2.1. Verify the expansions (2.11) and (2.17).

19.2.2. Verify (2.20).
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19.2.3. Verify the identity (2.23) and its use to evaluate the integral (2.24).

19.2.4. Verify that A(r) as given by (2.33) satisfies (2.31).

19.2.5. The purpose of this exercise is to verify (2.37) using (2.27).

19.2.6. The purpose of this exercise is to verify (2.38) using the definition (2.39).

19.2.7. The purpose of this exercise is to verify (2.42) using the definition (2.41).

19.2.8. Verify (2.43).

19.2.9. Verify (2.44).

19.2.10. Show that the integral (2.47) can be written in the form

[g/(4π)]

∫ rB

rA

drd × (r − rd)/|r − rd|3 = −[g/(4π)]

∫ rB

rA

drd ×∇[1/|r − rd|]. (19.2.107)

19.2.11. Verify (2.50).

19.2.12. Nature of thin solenoid and nature of field at the end of a thin solenoid.

19.2.13. The purpose of this exercise is to verify (2.54).

19.2.14. The purpose of this exercise is to verify (2.62).

19.2.15. Evaluate As(r; rA, m) as given by (2.63) for the case

rA = 0 (19.2.108)

and
m = ez. (19.2.109)

Show, using spherical coordinates, that in this case As(r; rA, m) has only a φ component
As

φ given by
As

φ = [g/(4π)](1 + cos θ)/[r sin θ]. (19.2.110)

Verify that As
φ is singular on the positive z axis, but not on the negative z axis. Show, by

explicit calculation, that

∇× As(r; 0, ez) = −[g/(4π)][r/|r|3], (19.2.111)

as expected.

19.2.16. Exercise on the singularity structure of the vector potential for a straight half-
infinite Dirac string.

19.2.17. Let As(r; rA, m) and As(r; rA, m′) be equal strength monopole vector poten-
tials produced by straight-line strings both originating at rA but extending to infinity in
the directions m and m′. See (2.63). Show that both produce the same magnetic field
(2.55) at points off the strings. Show that these vector potentials are related by a gauge
transformation.
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19.2.18. Verify (2.72) and (2.73).

19.2.19. Suppose the vector field F (r) is specified in some volume V . Surround this volume
by a thin shell Σ. Extend F (r) to all of space by requiring that it vanish outside Σ and go
to zero smoothly within Σ. It is a standard result in analysis that this can be done in such
a way that F (r) will have as many derivatives as desired in Σ. Find formulas for φ(r) and
A(r) in this case. Now let the shell shrink to zero thickness while keeping V unchanged so
that Σ becomes the surface S. Show that the relations (2.74), (2.77), and (2.78) continue
to give F (r) for r ∈ V , and give F (r) = 0 for r /∈ V .

19.2.20. Suppose that F (r) is globally defined and falls off at infinity as fast as 1/|r|2.
Show that, when the surface S in (2.77) and (2.78) is taken to infinity, the surface integrals
then vanish. Consequently, (2.77) and (2.78) then take the form

φ(r) = [1/(4π)]

∫

d3r′ G(r, r′)∇′ · F (r′), (19.2.112)

A(r) = [1/(4π)]

∫

d3r′ G(r, r′)∇′ × F (r′). (19.2.113)

Suppose that F (r) has the Fourier representation

F (r) =

∫

d3k exp(ik · r) F̃ (k). (19.2.114)

Such a representation is possible in any number of dimensions, and its existence is a con-
sequence of the completeness of the unitary representations of the translation part of the
Euclidean group. Show that there are the relations

∇ · F (r) = i

∫

d3k exp(ik · r) k · F̃ (k), (19.2.115)

∇ × F (r) = i

∫

d3k exp(ik · r) k × F̃ (k). (19.2.116)

Consequently, if the functions ∇ · F (r) and ∇ × F (r) are assumed known, then, by the
Fourier inversion theorem, the functions k · F̃ (k) and k × F̃ (k) are also known. Recall the
vector identity

a × (b × c) = b (a · c) − c (a · b). (19.2.117)

Use this identity to show that

k × (k × F̃ ) = k (k · F̃ ) − F̃ (k · k), (19.2.118)

and therefore

F̃ = [1/(k · k)][k(k · F̃ )] − [1/(k · k)][k × (k × F̃ )]. (19.2.119)

Thus, the function F̃ (k) is known if the functions k · F̃ (k) and k × F̃ (k) are known.
Correspondingly, the function F (r) is determined if the functions ∇ · F (r) and ∇ × F (r)
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are assumed known. Finally, we note that the identity (2.117) may be viewed as a Lie
algebraic relation for the cross-product Lie algebra. See Section 3.7.4. From Exercise 3.7.30
we know that the cross-product Lie algebra is equivalent to so(3), and therefore (2.117)
is also a property of so(3). Finally, so(3) is a subalgebra of the Lie algebra of the three-
dimensional Euclidean group. Thus, the fact that a vector field in three dimensions is
specified, if its divergence and curl are known, is a consequence of the properties of the the
three-dimensional Euclidean group.

19.3 Construction of Kernels Gn and Gt

Let us apply the results of the previous section to the case of a magnetic field B(r) in a
volume V under the assumption that there are no sources in V . See (1.1) and (1.2). As
stated earlier, this would be the case of interest for charged particles propagating through
an evacuated beam pipe. In this circumstance we may use (2.74), (2.81), and (2.82) to write

B(r) = −∇φn(r) + ∇× At(r) for r ∈ V (19.3.1)

with

φn(r) = −[1/(4π)]

∫

S

dS ′ n′ · B(r′)G(r, r′), (19.3.2)

At(r) = −[1/(4π)]

∫

S

dS ′ [n′ × B(r′)]G(r, r′). (19.3.3)

Here the superscripts n and t denote normal and tangential since the quantities so denoted
involve normal and tangential components of B.

The relations (3.1) through (3.3) could be employed if one wished to integrate Newton’s
equations of motion, and also find Taylor maps based on these equations, for all that would
then be required is the magnetic field B(r). See, for example, the equations of motion
(1.6.68) and (1.6.69). However, if one wishes instead to employ a Hamiltonian formulation
in order to reap the benefits of a symplectic formulation, then it is necessary to have the
magnetic field specified entirely in terms of a vector potential rather than in terms of both a
scalar and vector potential as in (3.1). What we need is a vector potential An(r) such that

∇× An(r) = −∇φn(r). (19.3.4)

Then, with the definition
A(r) = An(r) + At(r), (19.3.5)

there would be the result
B(r) = ∇× A(r). (19.3.6)

The construction of an An(r) that satisfies (3.4) can be accomplished with the aid of the
Dirac monopole vector potential. Inspection of φn(r), as given by (3.2), shows that it appears
to arise from a distribution of magnetic monopoles described by a magnetic charge surface
density spread over the surface S. Therefore, it should be possible to find an equivalent
vector potential based on the vector potential for a magnetic monopole.
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Let us make this idea precise. Define Bn by the rule

Bn = −∇φn (19.3.7)

so that the An that we seek satisfies

∇× An = Bn. (19.3.8)

Combining (3.2) and (3.7) gives the result

Bn = [1/(4π)]

∫

S

dS ′ n′ · B(r′)∇G(r, r′). (19.3.9)

From (2.83) we know that

∇G(r, r′) = −(r − r′)/|r − r′|3. (19.3.10)

But, from (2.72), we also have the relation

(4π/g)∇× As(r; r′, m′) = −[(r − r′)/|r − r′|3]. (19.3.11)

Define a quantity K(r; r′, m′) by the rule

K(r; r′, m′) = (4π/g)As(r; r′, m′)

= [m′ × (r − r′)]/{|r − r′|[|r − r′| − m′ · (r − r′)]}. (19.3.12)

See (2.63). In view of (3.10) through (3.12), we have established the key relation

∇G(r, r′) = ∇× K(r; r′, m′). (19.3.13)

See exercise 2.15 for a specific instance of this relation.
We are almost done. Insertion of (3.13) into (3.9) gives the result

Bn = [1/(4π)]

∫

S

dS ′ n′ · B(r′)∇× K(r; r′, m′)

= [1/(4π)]∇×
∫

S

dS ′ n′ · B(r′)K(r; r′, m′). (19.3.14)

Comparison of (3.8) and (3.14) shows that we may make the definition

An(r) = [1/(4π)]

∫

S

dS ′ n′ · B(r′)K(r; r′, m′). (19.3.15)

In evaluating the integral (3.15) it necessary to specify m′(r′), the direction of the straight
half-infinite Dirac string, as r′ varies over S. There is considerable freedom in doing so, and
different choices simply result in different gauges for An(r). The major consideration is that
no string intersect the volume V because it is desirable that An(r) be analytic for r ∈ V .
For many geometries a convenient choice is to require that m′(r′) be normal to and point
outward from S,

m′(r′) = n′(r′). (19.3.16)
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With this choice we may write

An(r) =

∫

S

dS ′ Bn(r′)Gn(r, r′) (19.3.17)

where
Bn(r′) = n′ · B(r′), (19.3.18)

and Gn(r, r′) is the kernel

Gn(r, r′) = [1/(4π)]K(r; r′, n′)

= {n′(r′) × (r − r′)}/{4π|r − r′|[|r − r′| − n′(r′) · (r − r′)]}.
(19.3.19)

We have derived the relations (1.7) and (1.10).
At this point we can take pleasure in observing that An(r) and Gn(r, r′), as given by

(3.17) and (3.19) or (1.7) and (1.10), have several desirable properties: First, as long as
the Dirac strings for r′ ∈ S do not intersect V , the functions Gn(r, r′), for every r′ ∈ S,
are analytic in r for all r ∈ V . It follows from (3.17), under mild conditions on Bn(r′) for
r′ ∈ S, that An(r) is analytic in V . Second, since the kernel Gn(r, r′) is essentially the
vector potential for a Dirac magnetic monopole, see (3.12) and (3.19), it has, for r ∈ V , the
properties

∇ · [Gn(r, r′)] = 0, (19.3.20)

∇× [∇× Gn(r, r′)] = 0. (19.3.21)

See (2.71) and (2.73). It follows from (3.17), again under mild conditions on Bn(r′), that
An(r) has these same properties,

∇ · [An(r)] = 0, (19.3.22)

∇× [∇× An(r)] = 0. (19.3.23)

In practical applications, the surface values Bn(r′) will only be known approximately, and
the integrals (3.17) may be evaluated numerically with limited precision. It is comforting
to know that, nevertheless, the resulting An(r) will be analytic in V and will satisfy the
relations (3.22) and (3.23) exactly no matter what errors are present in the surface values
Bn(r′) and no matter how poorly the integrals (3.17) are evaluated. All that matters is that
the kernel Gn be evaluated to high precision.

What can be said about the properties of At(r) as given by (3.3)? Just as is the case
for An(r), we would like At(r) to be analytic in V and to satisfy properties analogous to
(3.22) and (3.23) no matter how poorly the integrals (3.3) are evaluated. As the expression
(3.3) for At(r) stands, this is not the case. However, we can transform (3.3) into a form
that meets all our hopes.

Since, by assumption, B(r′) is curl free for r′ ∈ V , there exists a scalar potential ψ(r′)
such that

B(r′) = ∇′ψ(r′). (19.3.24)
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[Note, by convention, we have used a minus sign in (2.3) and a plus sign in (3.24). See also
(13.2.1).] Consequently, (3.3) can be rewritten in the form

At(r) = −[1/(4π)]

∫

S

dS ′ [n′ ×∇′ψ(r′)]G(r, r′). (19.3.25)

[Note that a knowledge of the tangential component of ∇′ψ(r′), which is what is involved in
(3.25) and is equivalent to a knowledge of ψ(r′) on S, is in turn equivalent to a knowledge
of the tangential component of B(r′) on S under the assumption that B(r′) is curl free.]
Next observe that there is the identity

[∇′ψ(r′)]G(r, r′) = ∇′[ψ(r′)G(r, r′)] − ψ(r′)∇′G(r, r′). (19.3.26)

Therefore (3.25) can also be written in the form

At(r) = −[1/(4π)]

∫

S

dS ′ {n′ ×∇′[ψ(r′)G(r, r′)]}

+[1/(4π)]

∫

S

dS ′ {n′ × [ψ(r′)∇′G(r, r′)]}. (19.3.27)

It can be shown that the first integral on the right side of (3.27) vanishes,

−[1/(4π)]

∫

S

dS ′ {n′ ×∇′[ψ(r′)G(r, r′)]} = 0. (19.3.28)

See Exercise 3.1. Moreover, the second integral can be rewritten in the form

[1/(4π)]

∫

S

dS ′ {n′ × [ψ(r′)∇′G(r, r′)]} = [1/(4π)]

∫

S

dS ′ ψ(r′)[n′ ×∇′G(r, r′)].

(19.3.29)

Consequently At(r) can also be written in the form

At(r) = [1/(4π)]

∫

S

dS ′ ψ(r′)[n′ ×∇′G(r, r′)]. (19.3.30)

Finally, let Gt(r, r′) be the kernel

Gt(r, r′) = [1/(4π)][n′(r′) ×∇′G(r, r′)]. (19.3.31)

With this definition, At(r) takes the final form

At(r) =

∫

S

dS ′ ψ(r′)Gt(r, r′). (19.3.32)

And working out (3.31) explicitly gives the result

Gt(r, r′) = [n′(r′) × (r − r′)]/[4π|r − r′|3]. (19.3.33)

We have derived the relations (1.8) and (1.11).
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At this point we should verify that we have achieved our desired goals. First, it is evident
from (3.33) that Gt(r, r′) is analytic in the components of r for r ∈ V and r′ ∈ S. Therefore,
from the representation (3.32), we see that, under mild conditions on ψ(r′), At(r) will be
analytic in V . Next, let us compute ∇ · Gt(r, r′). Recall the vector identity

∇ · (C × D) = D · (∇× C) − C · (∇× D). (19.3.34)

From this identity, and using (3.31), it follows that

∇ · Gt(r, r′) = −[1/(4π)]n′(r′) · {∇ × [∇′G(r, r′)]}
= [1/(4π)]n′(r′) · {∇ × [∇G(r, r′)]} = 0. (19.3.35)

Also, it is evident from (2.84) and (3.31) that

∇2Gt(r, r′) = 0 for r within V and r′ ∈ S. (19.3.36)

Again invoke the vector identity

∇× (∇× C) = ∇(∇ · C) −∇2C. (19.3.37)

When applied to Gt(r, r′), in view of (3.35) and (3.36), it yields the relation

∇× [∇× Gt(r, r′)] = 0 for r within V and r′ ∈ S. (19.3.38)

We have seen that the kernel Gt(r, r′) satisfies the relations (3.35) and (3.38), and note that
these relations are analogous to the relations (3.20) and (3.21) for Gn(r, r′). It follows, by
the same reasoning used in the case of Gn(r, r′) and An(r), that At(r) satisfies the relations

∇ · [At(r)] = 0, (19.3.39)

∇× [∇× At(r)] = 0, (19.3.40)

and these relations hold exactly even in the presence of errors in the surface values ψ(r′)
and no matter how poorly the integrals (3.32) are evaluated. As before, all that matters is
that the kernel Gt be evaluated to high precision.

The last step is to utilize (3.5) and (3.6). Since An(r) and At(r) are both analytic in
V , A(r) will be analytic in V . And since (3.22), (3.23), (3.39), and (3.40) hold, the same
will be true of A(r),

∇ · [A(r)] = 0, (19.3.41)

∇× [∇× A(r)] = 0, (19.3.42)

and these relations will again hold exactly even in the presence of errors in the surface values
and no matter how poorly the relevant integrals are evaluated. Finally, in view of (3.6), the
Maxwell equation

∇ · B = 0 (19.3.43)

will be satisfied exactly. And, in view of (3.6) and (3.42), the second Maxwell equation

∇× B = 0 (19.3.44)

will also be satisfied exactly.
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Exercises

19.3.1. The purpose of this exercise is to verify the relation (3.28).

19.3.2. At the beginning of this section it was mentioned that (3.1) through (3.3) could
be used to integrate Newton’s equations of motion in terms of B(r). However the B(r)
obtained using (3.1) is not guaranteed to satisfy the Maxwell equations if there are errors in
surface values and/or the integrals are not evaluated accurately. Verify that, in this regard,
there is no difficulty in the use of (3.2) by showing that it is guaranteed to satisfy

∇2φn(r) = 0, (19.3.45)

and therefore (3.43) is satisfied. Show that if (3.3) is replaced by (3.32), then (3.44) is also
guaranteed.

19.3.3. Suppose B(r) is source free in a volume V bounded by a surface S, as in (1.1) and
(1.2), and suppose Bn(r′) and ψ(r′) are known on S. The aim of this exercise is to compute
B(r) in terms of Bn(r′) and ψ(r′) using the representation given by (1.3), (1.6) through
(1.8), (1.10), and (1.11). Verify that

∇× Gn(r, r′) = [1/(4π)]∇G(r, r′) (19.3.46)

from which it follows that

Bn(r) = ∇× An(r) =

∫

S

dS ′ Bn(r′)∇× Gn(r, r′)

= [1/(4π)]

∫

S

dS ′ Bn(r′)∇G(r, r′)

= −[1/(4π)]

∫

S

dS ′ Bn(r′)(r − r′)/|r− r′|3, (19.3.47)

in accord with (3.9). Recall the vector identity

∇× (C × D) = (D · ∇)C + C(∇ · D) − (C · ∇)D − D(∇ · C). (19.3.48)

Using (3.31) and (3.48), show that

∇× Gt(r, r′) = −[1/(4π)]n′(r′)/|r − r′|3 + [3/(4π)][n′(r′) · (r − r′)](r − r′)/|r − r′|5,
(19.3.49)

from which it follows that

Bt(r) = ∇× At(r) =

∫

S

dS ′ ψ(r′)∇× Gt(r, r′)

= −[1/(4π)]

∫

S

dS ′ ψ(r′)n′(r′)/|r− r′|3

+ [3/(4π)]

∫

S

dS ′ ψ(r′)[n′(r′) · (r − r′)](r − r′)/|r − r′|5.

(19.3.50)
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Observe that, if we wish, we may define kernels Kn(r, r′) and Kt(r, r′) by the rules

Kn(r, r′) = ∇× Gn(r, r′) = [1/(4π)]∇G(r, r′)

= −[1/(4π)](r − r′)/|r − r′|3 (19.3.51)

and

Kt(r, r′) = ∇× Gt(r, r′)

= −[1/(4π)]n′(r′)/|r − r′|3 + [3/(4π)][n′(r′) · (r − r′)](r − r′)/|r − r′|5.
(19.3.52)

With the aid of these definitions, (3.47) and (3.50) take the form

Bn(r) =

∫

S

dS ′ Bn(r′)Kn(r, r′) (19.3.53)

and

Bt(r) =

∫

S

dS ′ ψ(r′)Kt(r, r′). (19.3.54)

Finally, write
B(r) = Bn(r) + Bt(r). (19.3.55)

Show that, for fixed r′, Kn(r, r′) falls off as 1/r2 for large r and Kt(r, r′) falls off as
1/r3.

19.3.4. Show that the Cartesian components of A(r), as given by (3.5), (3.17), and (3.32),
are harmonic functions,

∇2A(r) = 0. (19.3.56)

19.4 Numerical Benchmark

How well does the surface method described by relations (1.3) through (1.11) of Section 19.1
work in practice? The purpose of this subsection is to apply it to the monopole doublet
test case of Sections 13.7, Chapter 16, and Chapter 17. In subsection 19.4.1 we will set
up the Hamiltonian for particle motion in the field of a magnetic monopole doublet, select
a particular design orbit, and determine a suitable bent box that contains this orbit as in
Figure 1.1. In subsection 19.4.2 we will

19.4.1 Exact Field, Design Orbit Selection, and Choice of Sur-
rounding Bent Box

Consider the monopole doublet magnetic field described by Equations (13.7.1) through
(13.76) and Figures 13.7.1 through 13.7.5 of Section 13.7. As before, we will assign the
values

a = 2.5 cm = .025 m (19.4.1)
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and
g = 1 Tesla (cm)2 = 1 × 10−4 Tesla m2. (19.4.2)

In order to set up the Hamiltonian that will describe particle motion in this field, we also
need a vector potential A(r) such that

∇× A(r) = ∇ψ(r) (19.4.3)

with ψ given by (13.7.3). We will take the vector potential to be that of two Dirac magnetic
monopoles of opposite sign. The first, with strength ḡ, will be situated at r+ = aey and
will have a string extending from r+ to infinity along the positive y axis. The second, with
strength −ḡ, will be situated at r− = −aey and will have a string extending from r− to
infinity along the negative y axis. See (2.63) and Figure 4.1. Thus, A(r) will be given by
the relation

A(r) = A+(r) + A−(r) (19.4.4)

with

A+(r) = −As(r, r+, ey)

= −[ḡ/(4π)][ey × (r − aey)]/{|r − aey|[|r − aey| − ey · (r − aey)]}
= −[ḡ/(4π)](ey × r)/{|r − aey|[|r − aey| − y + a]}, (19.4.5)

and

A−(r) = −(−1)As(r, r−,−ey)

= −[−ḡ/(4π)][−ey × (r + aey)]/{|r + aey|[|r + aey| + ey · (r + aey)]}
= −[ḡ/(4π)](ey × r)/{|r + aey|[|r + aey| + y + a]}. (19.4.6)

Here, to compensate a pesky solid-angle factor of 4π that has crept in somewhere between
the beginning of Section 13.7 and the end of Section 19.2.2, we have introduced the modified
pole strength ḡ defined by the relation

ḡ = 4πg. (19.4.7)

Note that
ey × r = −xez + zex. (19.4.8)

Therefore, in terms of components and taking (4.7) into account, the relation (4.4) takes
the explicit form

Ax(x, y, z) = − gz

[x2 + (y − a)2 + z2]1/2{[x2 + (y − a)2 + z2]1/2 − y + a}
− gz

[x2 + (y + a)2 + z2]1/2{[x2 + (y + a)2 + z2]1/2 + y + a} ,

(19.4.9)

Ay(x, y, z) = 0, (19.4.10)
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Az(x, y, z) =
gx

[x2 + (y − a)2 + z2]1/2{[x2 + (y − a)2 + z2]1/2 − y + a}
+

gx

[x2 + (y + a)2 + z2]1/2{[x2 + (y + a)2 + z2]1/2 + y + a} .

(19.4.11)

From (2.28) and (4.9) through (4.11), and with some algebraic effort, it can be checked that

Bx = ∂yAz − ∂zAy = ∂yAz =

= gx[x2 + (y − a)2 + z2]−3/2 − gx[x2 + (y + a)2 + z2]−3/2, (19.4.12)

By = ∂zAx − ∂xAz

= g(y − a){[x2 + (y − a)2 + z2]−3/2 − g(y + a)[x2 + (y + a)2 + z2]−3/2,

(19.4.13)

Bz = ∂xAy − ∂yAx = −∂yAx =

= gz[x2 + (y − a)2 + z2]−3/2 − gz[x2 + (y + a)2 + z2]−3/2, (19.4.14)

in agreement with (13.7.4) through (13.7.6). See Exercise 4.2.
We also note, for future use, that examination of (4.9) through (4.11) reveals that

A(x, y, z) is even in y,
A(x,−y, z) = A(x, y, z) (19.4.15)

and therefore
A(x, y, z) = A(x, 0, z) + O(y2). (19.4.16)

To compute orbits (and maps) it is convenient to use z as the independent variable.
In this case, and for the vector potential given by (4.9) through (4.11), the Hamiltonian
becomes

K = −[p2
t /c

2 − m2c2 − (px − qAx)
2 − p2

y]
1/2 − qAz. (19.4.17)

See (1.6.16). Let β and γ be the usual relativistic factors defined by

β = v/c, (19.4.18)

γ = (1 − β2)−1/2 (19.4.19)

where v is the particle velocity. Then the magnitude of the mechanical momentum is given
by the relation

p = γmv = γβmc (19.4.20)

and the quantity pt has the value

pt = −(m2c4 + p2c2)1/2 = −γmc2. (19.4.21)

Since K is independent of t, the quantities pt and p will be constants of motion. Finally, let
p0 be the momentum for the design orbit.



1216 19. REALISTIC TRANSFER MAPS FOR CURVED BEAM-LINE ELEMENTS

Figure 19.4.1: (Place holder) A monopole doublet consisting of two magnetic monopoles of
equal and opposite sign placed on the y axis and centered on the origin. Also shown are
the half-infinite Dirac strings extending from the +ḡ monopole along the positive y axis and
from the −ḡ monopole along the negative y axis.
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At this point it is useful to introduce dimensionless variables by the rules

X = x/-, (19.4.22)

Y = y/-, (19.4.23)

τ = ct/-, (19.4.24)

Px = px/p
0, (19.4.25)

Py = py/p
0, (19.4.26)

Pτ = pt/(p0c). (19.4.27)

Here - is a convenient scale length, and is not to be confused with the path length introduced
in Exercise 1.7.6. The dimensionless variables satisfy the Poisson bracket rules

[X, Px] = [Y, Py] = [τ, Pτ ] = 1/(-p0). (19.4.28)

From now on we will redefine their Poisson brackets so that conjugate variables again have
unity Poisson brackets. This is permissible providing the Hamiltonian K is replaced by a
properly scaled new Hamiltonian Hamiltonian H given by the relation

H = −[1/(-p0)]{[(p0c)2P 2
τ /c2 − m2c2 − (p0Px − qAx)

2 − (p0)2P 2
y ]1/2 + qAz}

= −(1/-){P 2
τ − (mc/p0)2 − (Px −Ax)

2 − P 2
y ]1/2 + Az}

(19.4.29)

where
Ax(X, Y, z) = (q/p0)Ax(-X, -Y, z), (19.4.30)

Az(X, Y, z) = (q/p0)Az(-X, -Y, z). (19.4.31)

(See Appendix D.)
How should we chose a design trajectory? We would like it lie in the y = 0 plane, to

pass through the origin, and to be symmetric about z = 0. That it is possible for there to
be an orbit that lies in the y = 0 plane follows from (4.16). See Exercise 4.2. Also, observe
from (4.9) through (4.11) that A(r) vanishes at the origin,

A(0, 0, 0) = 0. (19.4.32)

Therefore, the canonical and mechanical momenta agree at the origin. See (1.5.29). Conse-
quently, and by symmetry, one way to achieve the desired design trajectory is to select, for
z = 0, the initial conditions

X = Y = τ = 0, (19.4.33)

Px = Py = 0, (19.4.34)

and then integrate both backward and forward in z to obtain the complete trajectory.
What remains is to select the values of Pτ and p0. From (4.20) we see that for the design

trajectory there is the relation
p0 = γ0β0mc. (19.4.35)
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From (4.21) we see that the energy on this trajectory will be given by

p0
t = −γ0mc2. (19.4.36)

Therefore, on this trajectory Pτ has the value

Pτ = P 0
τ = p0

t /(p0c) = −γ0mc2/(γ0β0mcc) = −1/β0. (19.4.37)

And, with regard to the ingredients in (4.29), we see that

(P 0
τ )2 − (mc/p0)2 = (1/β0)2 − [1/(γ0β0)2] = 1. (19.4.38)

Therefore, on the design trajectory, H becomes

H = −(1/-){[1 − (Px −Ax)
2 − P 2

y ]1/2 + Az}. (19.4.39)

[Note that, as it should, (4.39) agrees with (1.7.57) when δ = 0.] Finally, we should select (by
trial and error) the quantity p0, which now appears only in (4.30) and (4.31), in such a way
that, for the specified values of a and g, the design trajectory has some desired bend angle
φbend. For purposes of illustration, we will require that φbend for a positron be approximately
30◦.

Let us work out the equations of motion associated with H as given by (4.39). For
convenience we will take the scale length to have the value

- = 1 m. (19.4.40)

We find the results

X ′ = ∂H/∂Px = (Px −Ax)/[1 − (Px −Ax)
2 − P 2

y ]1/2, (19.4.41)

Y ′ = ∂H/∂Py = Py/[1 − (Px −Ax)
2 − P 2

y ]1/2, (19.4.42)

P ′
x = −∂H/∂X = (∂Ax/∂X)(Px −Ax)/[1 − (Px −Ax)

2 − P 2
y ]1/2 + (∂Az/∂X), (19.4.43)

P ′
y = −∂H/∂Y = (∂Ax/∂Y )(Px −Ax)/[1 − (Px −Ax)

2 − P 2
y ]1/2 + (∂Az/∂Y ). (19.4.44)

Here a prime denotes d/dz. Also, from (4.9) and (4.11), we have the results

∂xAx =
gxz

[x2 + (y − a)2 + z2]{a − y + [x2 + (y − a)2 + z2]1/2}2

+
gxz

[x2 + (y − a)2 + z2]3/2{a − y + [x2 + (y − a)2 + z2]1/2}
+

gxz

[x2 + (y + a)2 + z2]{a + y + [x2 + (y + a)2 + z2]1/2}2

+
gxz

[x2 + (y + a)2 + z2]3/2{a + y + [x2 + (y + a)2 + z2]1/2} , (19.4.45)
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∂xAz =
−gx2

[x2 + (y − a)2 + z2]{a − y + [x2 + (y − a)2 + z2]1/2}2

− gx2

[x2 + (y − a)2 + z2]3/2{a − y + [x2 + (y − a)2 + z2]1/2}
+

g

[x2 + (y − a)2 + z2]1/2{a − y + [x2 + (y − a)2 + z2]1/2}

− gx2

[x2 + (y + a)2 + z2]{a + y + [x2 + (y + a)2 + z2]1/2}2

− gx2

[x2 + (y + a)2 + z2]3/2{a + y + [x2 + (y + a)2 + z2]1/2}
+

g

[x2 + (y + a)2 + z2]1/2{a + y + [x2 + (y + a)2 + z2]1/2} , (19.4.46)

∂yAx =
−gz

[x2 + (y − a)2 + z2]3/2
+

gz

[x2 + (y + a)2 + z2]3/2
, (19.4.47)

∂yAz =
gx

[x2 + (y − a)2 + z2]3/2
− gx

[x2 + (y + a)2 + z2]3/2
. (19.4.48)

Together, these relations provide the equations of motion.
Upon integrating these equations of motion, with the initial conditions (4.33) and (4.34),

we find, as possible precise values, the combination

φbend =, (19.4.49)

when
qg/p0 = ∗. (19.4.50)

Correspondingly, we find the values
p0 =, (19.4.51)

β0 =, (19.4.52)

γ0 = . (19.4.53)

Figure 4.2 shows the spatial part of the design trajectory found in this way. Figure
4.3 displays Px(z) on this trajectory. (Of course, we also have y = 0 and Py = 0 on this
trajectory.) Also shown in Figure 4.2 is the top view of a suitable bent box that surrounds
this trajectory. The top and bottom of the box lie in the planes y = ± ∗ cm. The circular
arcs have the common center

(xc, zc) = (∗cm, 0) (19.4.54)

and have radii
rout = ∗cm, (19.4.55)

rin = ∗cm. (19.4.56)

The straight ends of the box, not fully shown, have lengths of ∗cm.
It is also useful to have graphics of the quantities Ax and By along the design trajectory.

They are displayed in Figures 4.4 and 4.5.
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Figure 19.4.2: (Place holder)Design trajectory X(z) and surrounding bent box.

Figure 19.4.3: (Place holder)The momentum Px(z) on the design trajectory.
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Figure 19.4.4: (Place holder)The quantity Ax along the design trajectory.

Figure 19.4.5: (Place holder)The quantity By along the design trajectory.
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19.4.2 Bent Box Results

19.4.3 Comparison of Maps

Exercises

19.4.1. Verify (4.4) through (4.11).

19.4.2. Show that the components of A+ are given by the relations

A+
x (x, y, z) = − gz

[x2 + (y − a)2 + z2]1/2{[x2 + (y − a)2 + z2]1/2 − y + a} , (19.4.57)

A+
y (x, y, z) = 0, (19.4.58)

A+
z (x, y, z) =

gx

[x2 + (y − a)2 + z2]1/2{[x2 + (y − a)2 + z2]1/2 − y + a} . (19.4.59)

Verify that
∇× A+(r) = g(r − aey)/|r − aey|3. (19.4.60)

Infer an analogous result for A−, and hence verify (4.12) through (4.14).

19.4.3. Verify (4.15) and (4.16). Show that any trajectory having the initial conditions
y = 0 and Py = 0 must lie in the y = 0 plane.

19.5 Smoothing and Insensitivity to Errors

19.6 Application to a Storage-Ring Dipole



Bibliography

Electromagnetism

[1] J.D. Jackson, Classical Electrodynamics, John Wiley (1999).

[2] J. Reitz and F. Milford, Foundations of Electromagnetic Theory, Second Edition,
Addison-Wesley (1967).

[3] R. Plonsey and R. Collin, Principles and Applications of Electromagnetic Fields, Mc-
Graw Hill (1961).

[4] The idea of constructing kernels using Helmholtz’s theorem and Dirac’s magnetic
monopole vector potential is due to Peter Walstrom.

General References

[5] C. Mitchell, “Calculation of Realistic Charged-Particle Transfer Maps”, University of
Maryland Physics Department Ph.D. Thesis (2007).

1223


