Bunched-Beam Phase Rotation for a Neutrino Factory

David Neuffer, Andreas Van Ginneken, Daniel Elvira

Fermilab

• Study I – II v-Factory – feasible but too expensive

Remove Induction Linac

- Replace with **High-Frequency** Buncher and phase-energy rotation:
 - Capture beam in high-frequency buckets
 - Reduce energy spread with high-frequency $\phi \delta E$ rotation
 - Inject into fixed-frequency cooling
- Simulation and Optimization
 - Simucool adds transverse motion + some optimization
 - GEANT4 fully realistic simulation; match into realistic cooling
- Discussion
 - Cost estimates ???
 - Future development

• "Cost" reduced by ~25% from Study I

Table A.1: Construction Cost Rollup per Components for Study-II Neutrino Factory. All costs are in FY01 dollars.

System	Magnets	RF power	RF cav.	Vac.	\mathbf{PS}	Diagn.	Cryo	Util.	Conv. Facil.	Sum
	(\$M)	(\$M)	(M)	(\$M)	(M)	(M)	(M)	(M)	(\$M)	(M)
Proton Driver	5.5	7.0	66.1	9.8	26.6	2.2	28.5		21.9	167.6
Target Systems	30.3			0.8	3.5	8.0	18.8		30.2	91.6
Decay Channel	3.1		\bigcirc	0.2	0.1	1.0	0.2			4.6
Induction Linacs	35.0		90.3	4.4	163.3	3.0	3.6		19.5	319.1
Bunching	48.8	6.5	3.2	2.7	2.1	5.0	0.3			68.6
Cooling Channel	127.6	105.6	17.7	4.3	4.8	28.0	9.5		19.5	317.0
Pre-accel. linac	46.3	68.4	44.1	7.5	3.0	6.0	13.6			188.9
RLA	129.0	89.2	63.4	16.4	5.6	4.0	28.9		19.0	355.5
Storage Ring	38.5			4.8	2.2	29.0	4.8		28.1	107.4
Site Utilities								126.9		126.9
Totals	464.1	276.7	284.8	50.9	211.2	86.2	108.2	126.9	138.2	1,747.2

(m/100 100 0

-100

Induction Linac Technology

Induction

Core

Beam

-SC Coil

• Study II scenario uses ~ 250m long induction linac to capture muons. Cost is prohibitive 100 23,62 Technology is difficult; σ_p/p 55 % corrected kin energy 0.50.91 (m) σ_{ct} 26.8 (mm) ϵ_n 0.4Hg Target (.45 m) $\mu/p = 1.15$ 0.3Induction #1 Mini Cooling (100 m) (3.5 m H₂) 0.2Induction #2 (80 m) Induction #3 (80 m) 0.10.02000 400Cell Cables t (ns) Ind 1 σ_{p}/p 4.4 % corrected kin energy 0.527.95 (m) Ind 3 σ_{ct} 12.2 (mm) ϵ_n 0.4 $\mu/p = 0.50$ 0.3 d_2 0.20.1ानग 0.02004000 1002003004000 t (ns) time (nsec)

SCR Switched Prime Power 4

- Drift (100m) decay and drift
- Buncher (60m) 300 \rightarrow 87MHz, V \rightarrow 4.8 (z/L)² MV
 - Trap beam into string of ~200 MHz bunches
- $\phi \delta E \operatorname{Rotator}(8.4 \mathrm{m}) 187 \mathrm{MHz}$, $V = 10 \mathrm{MV/m}$
 - rotate string of bunches to ~ equal energies
- Cooler (100m) 183MHz ionization cooling

Longitudinal Motion Through System

7

Simucool-optimized buncher and fixed frequency ϕ - δ E rotation

• Obtains ~0.28 μ /p at end of buncher

Simucool optimizations (AvG)

- Large statistics tracking code (SIMUCOOL) can be used to reoptimize Buncher + φ - δE Rotation
- Reoptimize baseline adiabatic buncher and fixed frequency $\phi \delta E$ rotation (track rms bunches in each band)
 - – Obtains ~0.3 μ/p (up from 0.25)
- Change fixed-frequency to "vernier"; sets phase to N-1/2 wavelengths from first to last ref. bunch; maximizes ϕ - δ E rotation obtains ~0.35 µ/p
- Retrack with ICOOL similar results are obtained

• Obtains ~0.34 μ /p at end of buncher

- A van Ginneken has completed a new set of optimizations; changes some parameters
- Drift reduced to ~76m
- Buncher parameters changed:
 - Reference energies: 64 MeV; 186MeV
 - 20 bunches between reference energies 384 233 MHz
 - Linear ramp in voltage 0 to 6.5MV/m
 - Still 60m long
- Rotator changed
 - "vernier" frequency (20 + δ) wavelengths between reference bunches (234-20 MHz), 10MV/m
 - Optimize on longitudinal bunch densities
 - Best case has $\delta \cong 0.16$
 - Longer Rotator (~30m)

- Drift (80m)
- Buncher (60m) 380 \rightarrow 230 MHz, V \rightarrow 6.5 (z/L) MV/m
- φ-δE Rotator(30m) 230 220 MHz, V = 10 MV/m
- Cooler (100m) ~220 MHz

0.20

0.15

0.05

0.0003

0.0002

К.Е. (987) 1.0

0.25

0.20

0.15

0.10

0.05

90 MeV

0.3739 mue in

0.4071 mus in 100 MeV

13.2 cm

GEANT4 simulations (D. Elvira)

- Fully "realistic" transverse and longitudinal fields
 - Magnetic fields formed by current coils
 - Rf fields from pillbox cavities (within solenoidal coils
- Studied varying number of different rf cavities in Buncher
 - (60 (1/m) to 20 to 10) ... 20 was "better", 10 only a bit worse
- Simulations of ϕ -E rotation
- Will (?) extend simulations + optimization through cooling channel

20-frequency Buncher

64.9% of the particles survive at the end of the buncher.

62.2% of the particles survive at the end of the buncher.

- Bunch formation in GEANT4 simulations
- 20 rf frequencies

• 10 rf frequencies

Energy projections (Elvira/Keuss)

20 rf frequency case ~0.38 μ/p within $\pm 50~MeV$ of peak

10 rf frequency case ~0.35 μ/p within ±50 MeV of peak

E-kinetic vs. c*time E-kinetic (MeV) c*time

rf rotation with DPGeant

MuCOOL-254

Conclusions

At the end of the phase rotator, we see:

• Good quantitative agreement between GEANT4 realistic simulation and ideal 60 frequencies result from D.Neuffer & A. Van Ginneken.

• The simpler 20 and 10 frequencies bunchers show good performance as well.

Future:

The buncher and phase rotator parameters should be optimized for whatever cooling channel follows them. A matching section should handle the transition, to achieve maximum acceptance of the beam by the cooling channel. The whole system should be re-optimized for maximum transmission and cooling.

- Beam after phase rotation and buncher (z= 183m) in AvG optimized case; measured at rf frequency; bunches are overlapped, mod f_{rf}
- Beam in Study 2 after phase rotation, buncher and initial cooling (z = 430m);
- phase space density is similar

Look at Individual bunchlets

 Individual bunchlets are confined in center of rf bucket suitable for cooling and acceleration

Hardware For Adiabatic Buncher

- Transverse focussing (currently)
 - B=1.25T solenoidal focusing
 - R=0.30m transport for beam

Rf requirements:

Buncher: ~300 → 210 MHz; 0.1 → 1.8MV/m (60m)

(initially 1 cavity every 1m; reduces frequency in 2-4MHZ steps; 1-D and GEANT4 simulations indicate ~10 frequencies are sufficient (~10MHz intervals)

• $\phi \rightarrow \delta E$ Rotator: 210 $\rightarrow 200$ MHz; 10MV/m (~10m)

Rf Cost Estimate (Moretti)

Frequency	Cavity length	Cavity Cost	Rf Power	Total
300MHz	0.5 m	225 k\$	225 k\$	450k\$
290	1	450	350	800
280	2	900	700	1600
270	2	900	1000	1900
260	2	900	1000	1900
250	2	900	1000	1900
240	2	900	1000	1900
230	3	1200	1500	2700
220	4	1400	1500	2900
210	5	1800	2000	3800
200	10	3800	4200	8000
	33.5m	13375	14475	27850k\$

- Baseline example has 1.25 T solenoid for entire transport (drift + buncher + rf rotation) (~170m)
- Uncooled μ-beam requires 30cm radius transport (100m drift with 30cm IR - 1.25T)
- In simulations, solenoid coils are wrapped outside rf cavities.
 ⇒(~70m 1.25T magnet with 65cm IR)
- FODO (quad) transport could also be used ...

- 100m drift: 11.9 M\$ (based on study 2)
- Buncher and phase rotation: 26 M\$ (study 2)
- Cryosystem: 1.5M\$; Power supplies 0.5M\$
- Total Magnet System : 40M\$

- (D. Summers says he can do Al solenoids for ~10 M\$)
- Would quad-focusing be cheaper ?

- High Frequency ϕ - δ E Rotation replaces Study 2:
 - Decay length (20m, 5M\$)
 - Induction Linacs + minicool (350m, 320M\$)
 - Buncher (50m, 70M\$)
- Replaces with:
 - Drift (100m)
 - Buncher (60m)
 - Rf Rotator (10m)
 - Rf cost =30M\$; magnet cost =40M\$ Conv. Fac. 10M\$ Misc. 10M\$
- Back of the envelope: (400M\$ \rightarrow ?? 100M\$)

Summary

- High-frequency Buncher and ϕ - δ E Rotation simpler and cheaper than induction linac system
- Performance probably not as good as study 2, But
- System will capture both signs (μ^+ , μ^-)
- To do:
 - Complete simulations with match into cooling channel!
 - Optimizations
 - Scenario reoptimization

Dilbert Comment

Copyright © 2002 United Feature Syndicate, Inc.