

Harvesting of Isotopes at High-Powered Accelerator Facilities

2nd High Power Targetry Workshop Oak Ridge National Laboratory October 10-14, 2005

Mark A. Stoyer

For Larry Ahle

ision

hysics & Advanced Technologies 🛹 🗸 🗸 🖓

Outline

- Why are we interested in Isotope Harvesting?
 - -Medical isotopes
 - **—SSP Radiochemistry**
- How might it be accomplished?
 - -ISOL
 - —PF
 - -Neutron source
 - -Radiochemistry
- Novel target materials
- Conclusions

Medical Isotope Summary

- RIA will enable exploration into new production methods for research quantities of medical isotopes.
- Light ion reactions at ~10 MeV/A offer new approach beyond current medical cyclotrons.
- Target flexibility and kinematics effects ease post handling requirements.

IBA's Cyclone 30 High-current H⁻ cyclotron for isotope production

Isotope Production stations

After the Dominic series of tests, ending in 1962, nuclear testing moved underground

POST-SHOT SURFACE

4200

PRE-SHOT SURFACE

Now, we not only had to worry about representative samples, but how to retrieve them from depths of as much as a mile

SCALE IN FT

Cores for radiochemical analysis are retrieved by slant drilling

After subsidence is complete, the rig is moved in and set up

Finding the debris puddle is more of an art than a science

Sample recovery costs more than sample analysis in most cases

In principle, it is possible to obtain the total fission yield of the device from a single cumulative fission yield and a bomb fraction

In practice, this is complicated by the existence of several nuclear fuels in the same device and the resulting "fission split"

The "double-humped fission distribution" is slightly different for each fuel and is a function of neutron energy

We break the fission yield into those portions resulting from the three main nuclear fuels (²³⁵U, ²³⁸U, and Pu) and two energy groups (the fission-spectrum low-energy group and the 14-MeV high-energy group)

The six-group split is usually taken from model calculations

The fission product we measure days later is not what was initially present

Known cross-sections

Just as the fission yield can be determined from the fission products, the fusion yield can be determined from the products of fusion (mainly ⁴He)

However, it is often advantageous to infer the fusion yield through the activation of radiochemical detectors loaded in thermonuclear fuel

Conversion of detector activations to thermonuclear yield is accomplished through explosion code calculations and a good set of reaction cross sections

Unfortunately, many of the relevant reactions involve transient radioactive nuclides as targets, produced in the high fluences present in the explosion

Most of these cross sections are calculated rather than measured

- 25 nuclear states are used for Lu
- (n, 2n), (n, 3n), (n, n'), and (n, γ) reactions connect the states
- 192 reactions are included in analyzing the data — only 5 cross sections are measured
- The remainder are modeled using state-of-the-art nuclear physics

We have a reliable, well-tested set of cross sections for Lu which are used to extract mix information

The required nuclear data (cross-section set) is extensive and largely modeled

We are required to improve our understanding of the performance of nuclear weapons and quantify the uncertainties

Among other things, this means improving the nuclear data used to calculate past nuclear events

Burn-up of fission products

Modeled vs. measured cross sections for thermonuclear reactions

RIA will enable us to measure neutron-induced crosssections on radioactive isotopes currently un-measurable

Harvesting Isotopes at RIA

Experimental Areas: 1: < 12 MeV/u 2: < 1.5 MeV/u 3: Nonaccelerated 4: In-flight fragments

- 1. Production at first stripper Direct Reactions
- 2. ISOL with Mass Separator
- 3. Fragmentation with IGISOL system

How Much Can Be Harvested at RIA

$dN(t)/dt = P - \lambda N(t) \rightarrow N(t) = P/\lambda(1 - e^{-\lambda t})$

For 1 day half-life isotope with production rate of 10^{11} pps, $1x10^{16}$ atoms (~ 2 Curies) can be collected in 3 days.

For 1 year half-life isotopes with production rate of 10^{11} pps, $8x10^{16}$ (~ 50 mCuries) can be collected in 10 days.

Isotope Harvesting - ISOL

- Can more than one beam be extracted (Parasitic collection)?
- If so, how far apart in mass can secondary and primary be?

Multiple target stations might be utilized for production of certain isotopes

"Sécondary" production of isotopes might be accomplished with a different target module located downstream from the primary target to use the leftover proton beam

Isotope Harvesting - Fragmentation

Parasitic Harvesting Difficult for

 Only isotopes near to primary fragment make it through separator.

LISE Simulation

Beam: ¹³⁶Xe Primary Fragment: ¹³⁰Cd Secondary Fragment: ⁹²Nb Geometry: 1. Dipole 2. Wedge (Pb) 3. Collection Foil (Pb) Only ⁹⁰⁻⁹⁴Nb tracked

Reactions in collector foils (not simulated) will degrade purity for both parasitic and primary

Many isotopes are planned for experiments benefiting both SSP and Astrophysics communities

Summary of 1997 Workshop at Livermore

			Rad-Chem		s-process	6	
Isotope	Half-life			Koehler	-Kappeler	G. Mathews	Wilhelmy
				Priority	Feasible?		
63 Ni	100	У		3	Х		
79 Se	1.00E+04	У		1	Х	Х	Х
85 Kr	10.7	У		1	Х	Х	Х
86 Rb	18.8	d		1			
88 Y	106.6	d	R	4			
89 Sr	50.5	d		2			
90 Sr	28.8	У		2	Х		
93 Zr	1.00E+06	v	R			Х	Х
95 Zr	64	d	R	1			Х
94 Nb	2.00E+04	v		2	Х		
95 Nb	3.50E+01	d		2			
99 Tc	2 00E+05	v				X	X
106 Ru	367	d		2	Х	~~~	~
107 Pd	1.00E+06	v				Х	Х
119 Sn	Stable	-				X	X
134 Cs	2	v		1		~	X
135 Ce	2 00E±06	y V		2	Y		Y
127 Co	3.00E+00	y		2	(Y)		~
141 Co	30.17	y		2	(^)	v	v
141 Ce	32	d		4		^	^
147 Nu	26	u		1	v		v
147 Pm	2.6	У		1	~	Y	X
151 Sm	90	У		- 4		X	X
152 EU	13	У	R	1			X
154 EU	8.5	У	R	1	N N		X
155 EU	5	У	R	1	X		X
153 Gd	241	d		1	X	X	X
160 Tb	72.1	d		1			
161 Tb	6.9	d		2			
163 Ho	33	У		1	X (x-ray)		Х
166 Ho	1200	У		2			
169 Er	9.4	d		1	X	Х	
170 Tm	128	d	R	1	X (?)	Х	Х
171 Tm	1.92	У	R	1	Х		
175 Yb	4.19	d		2	(X)		
176 Lu	3.60E+10	У					Х
181 Hf	42.4	d		2			
182 Hf	9.00E+06	У		2	Х		
179 Ta	1.70E+00	у		1	Х		
185 W	75	d		1	Х		Х
186 Re	1.00E+05	у		1		Х	Х
191 Os	15.4	d		1	Х		
192 lr	74	d	R	1			Х
193 Pt	50	y		1	X (x-rav)	Х	Х
198 Au	2.69	d		2	(····· J)		
203 Ha	46.8	d		1			
204 TI	3.77	v		1	X	х	
205 Ph	1.00E+07	, v				~	X
210m Bi	3.00E+06	y V		2	X		~
2100	5.002+00	y d		2	× ×		
∠ ivy DI	0.01	u		- 4	► ∧		

Isotope production at the ILL, 2002

larget	Product	Minimum	Halt Lite
Nd-146	Pm-147	3.8 mg	2.62 yr
Sm-154	Eu-155	8.9 mg	4.76 yr
Er-170	Tm-171	9.4 mg	1.92 yr

Stockpile Stewardship Target Plan

FY 2002	FY 2003	FY 2004	FY 2005
¹⁷¹ Tm	²³⁸ Pu	¹⁹² lr	²³² U
^{173,174,176} Lu	¹⁷⁰ Tm	2 tbd	2 tbd
¹⁵⁵ Eu	1 tbd		

s-Process Branch Point Nuclei

(Half-lives greater than 1 yr)

¹⁵¹Sm, ¹⁴⁷Pm (FY2002)
⁶³Ni, ⁸⁵kr, ⁹³Zr, ⁹⁹Tc, ¹³⁴Cs, ¹⁵²Eu
¹⁵⁴Eu, ¹⁵⁵Eu, ¹⁶³Ho, ¹⁷¹Tm, ¹⁷⁶Lu, ¹⁷⁹Ta
¹⁸⁶Re, ¹⁹³Pt, ²⁰⁴Tl, ²⁰⁵Pb

Required Flux For Activation Measurements at RIA

Assumptions

- RIA production rates from ANL website
- 10 day collection period, 10 day neutron irradiation
- (n,γ) cross section at 40 keV
- 1% detection efficiency (activation method)
- 1000 detected events needed (~3% statistical error)

Shorter-lived

isotopes require

surrogate

methods also

On Site Neutron Source for RIA

The basic elements of a manipulator cell for chemical operations

The shielding is separate from the contamination enclosure

Chemical operations favor an effectively closed rather than a truly closed system

> Containment using air flow prevents corrosion and build up of gases

There is an intake filter as well as an outlet (HEPA) filter

The 1-ft water window can be slung below the cell, leaving the glove box intact

Some engineering issues may arise after the cell goes into operation

For instance, it should not be possible to apply force to the inside of the window with a manipulator hand

This is **bad**

Correction of this "little problem" took almost a year

A containment breach is the third-from-worst thing that can happen in-cell

The DANCE barium fluoride array

Monte Carlo (GEANT) Simulations M. Heil R. Reifarth F. Kaeppeler Forschungzentrum Karlsruhe

- •162 segments with 4 different shape crystals (159 segments with crystals)
- High efficiency will allow measurements on milligram samples
- Highly segmented to allow detection of radioactive targets
- Hit pattern analysis and reaction calorimetry to minimize backgrounds
- · Inner radius = 17 cm
- · Crystal depth = 15 cm
- Extensive Monte Carlo simulations to design detector
- · All crystals will be delivered in FY2002
- State-of-the-art fast digitizers for data acquisition
- Array will be completed in 2002, but some data may be obtained with partial array.
- · M. Heil, et al., Nucl. Instr. Meth. A459, 229-246 (2001)

Measure (n,γ) cross-sections on radioactive targets

DANCE at RIA - Overview

Novel target materials are being explored to increase robustness and release rates

T = 2220 K

Detector Mass S-6.4 mm array Analyzer of Super focal plane Heavy iniection from Atoms the hot catcher i = 1pµA i = 0.33 kW $Q_1 \quad Q_2$ A>250 D_2 ECR-ion ⁴He ⁴⁸Ca source A=250 D_{3A} intermediate focus 2 m

Ca + Pu \rightarrow 114 (eka-Pb)

Zr stabilizes the matrix over a large temperature range so there is no phase transition

D. F. Carroll, J. Am. Ceram. Soc., 46 [4] 194-195 (1963)

In preparation for making Pu ceramics, we made a surrogate (Ca + Sm \rightarrow Pb)

Conclusions

- Isotope harvesting will benefit a variety of projects
- The feasibility of parasitically harvesting isotopes at RIA is being investigated
- Investigation of using the leftover primary proton beam in a second target to produce isotopes has started
- Novel target materials are being manufactured and tested
- A combination of cross-section measurement techniques will be used to measure interesting cross-sections

-Activation experiments

-Surrogate reactions