

Isotope harvesting at high power radioactive beam facilities

Jerry Nolen Physics Division Argonne National Laboratory [Helge Ravn, CERN/ISOLDE]

2nd High-Power Targetry Workshop Oak Ridge National Laboratory October 10-14, 2005

Science

Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy

Introduction

- General overview of isotope separation methods and potential for practical applications of isotope harvesting at high power RIB facilities
- Presentation based mainly on contributions of Helge Ravn
- Ideas are generally applicable for parasitic operation at future facilities such as RIA and EURISOL

The role of isotope separation in future medical isotope production

rams

H. L. Ravn/CERN, PH

Helge Ravn CERN, EP

http://cern.ch/Helge.Ravn/files/The Role of Isotope Sep.ppt /

Overview

- The mass separation in the Radioactive Ion beam Facilities (RIB)
- A biomedical program with carrier free radionuclides has shown the strength of such high quality preparations.
- Concentrate on the new dry radiochemical separation techniques using isotope separation
- The nuclear production reactions at energies > 100 MeV
- Ion sources for efficient and selective ionization
- Efficiency of the mass separation process
- Describe the new production methods that may be derived from the ISOL target and ion-source techniques
- The method makes almost all existing radionuclides available and allows to introduce new ones in medicine
- The opportunity for parasitic medical isotope production in collaboration with future high power accelerator driven projects
- Conclusion and outlook
- Acknowledgement and links

Overview

•Use of the mass separation methods from Radioactive Ion beam Facilities (RIB) allows to produce carrier free radioisotopes of all elements.

•The method permits to introduce new isotopes hitherto not available. They are either only or best produced in nuclear reactions at energies > 100 MeV.

•Concentrate on the new dry radiochemical separation techniques developed for isotope separation.

•A biomedical program with this isotopically pure and carrier free material has shown the strength of such preparations.

•An opportunity is described to place future mass production in synergy with the upcoming facilities using MW targets.

ISOLDE 2004: 2560 hours radioactive ion beam received in the second seco

- Almost all nuclides of the nuclidic chart available in one laboratory
- Unprecendented purity chemical (carrierfree) since mass separated
- 30 years experiences in complex bio-medical studies using ISOLDE produced radionuclides
- Implementation of isotope separation technique into the medical isotope programs.
- First patient studies 1978 MED Dresden planar scintigraphy of lymphoma patients using ¹⁶⁷Tm Citrate
- Over more than 2 decades collected data set on the bio-kinetik behaviour of radio-lanthanides in tumor bearing animals
- Lanthanides are used today in tumor seeking radiotracers
- Exotic positron emitters are available
- First in-vivo study with the partially alpha emitting ¹⁴⁹Tb
- Already today patient doses available
- Materials: Collections in the on-line mass separator, Waste recycling, radiochemically processed, partially at CERN, later in Rossendorf and Geneva Helge Ravn CERN, EP

Autoradiogram of a whole body sagittal slice of a tumor bearing mouse 24 hours after injection of 0.4 MBq of ¹⁶⁷Tm-Citrate

Lanthanides are unspecific tumor seeking tracers

G.J.Beyer, R.Münze et al., in: "Medical Radionuclide Imaging 1980" IAEA Vienna (1981) Vol.1 p. 587

The Isotope Separator On-Line (ISOL)

Target and ion-source techniques developed for beams of 600 isotopes of 70 elements

Accecceleration to 60 kV

Electromagnetic mass separation

Delivered as singly charged, monoisotopic, CW beams of 60 kV energy **Driver beams:**

Spallation neutrons Thermal neutrons High energy protons Heavy ions

ISOLDE

Integrated

target and

ion source

An ISOLDE target and ion source unit

Reaction mechanisms

The need for selectivity

ISOLDE upper to access understand and access and access

15

Calculated production rate of some rare earths in a Hg target irradiated with a 5mA , 1 GeV proton beam.

Helge Ravn CERN, EP

Mass

Production rate in the target

σ REACTION CROSS SECTIONS Tens of milibarns

DRIVER BEAM INTENSITY Driver beam intensity presently 1 to 100 μ A

fission

- How to get the products out and transferred into an ion beam for separation and acceleration.
- Decay losses due to diffusion and effusion from the target to ion source $\epsilon_1 \ \epsilon_2 = 100\%$ for nuclei with $t_{1/2}$ >1h
- Ionisation efficiency $\varepsilon_3 = 10-25\%$ for long-lived nuclei

•
$$A = 10^{12} atoms/s_{6} 88 90 92$$

20

96 98

Release models

C.J. Densham et al., Nucl. Instr. Meth. B126 (1997) 154.

B. Mustapha and J.A. Nolen, Nucl. Instr. Meth. B204 (2003) 286.

Mario Santana-Leitner, PhD, 2005 (http://www.ganil.fr/eurisol/)

Database on diffusion and desorption properties is maintained and further studied made in the EU FP 5 program TARGISOL

http://www.targisol.csic.es/

Release efficiency $\epsilon_1 \ \epsilon_2$ determined by the decay losses

Release efficiency of tin from a UCx/graphite target

126

- High energy reactions provide a wide spectrum of reaction products
 ⇒ Universality !
- 2. Mass separated beams are intrinsically carrier-free !
- 3. Simultaneous extraction of several isotopes !
- 4. Ion implantation facilitates the molecule labelling !
- 5. Ion source unit and target materials reusable many times !
- 6. No liquid waste !
- 7. Production presently only allows to supply research quantities !
- 8. Future industrial production sites for therapeutical amounts ? mb

ISOLDE

CERN

00 ub

Existing ISOL beams

r																	
1	Isotopes with $I_{1/2} < 0.1$ s separated														2		
н															He		
3	4	Isotopes with $T_{1/2} < 10$ s separated 5 6 7 8 9												10			
1.1	Ro													F	No		
	De														U U	<u> </u>	INC.
11	12	Isotopes with T _{1/2} > 10 s separated											14	15	16	17	18
Na	Ma							ΔΙ	Si	D	S	CI	Δr				
na	INIG												51	•	5		
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	т	1/	Cr	Mn	Fo	Co	NI	C 11	7n	Ga	Go	٨c	80	B r	K r
N	Ga	36		V	G		LG	60		Gu	211	Ga	Ge	M3	Se	DI	NI
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Dh	Cr	v	7 r	Nh	Mo	То	D	Dh	Pd	۸a	Cd	In	Sn	Sh	То		Y ₀
КIJ	3	I		UNI		IC I	кu	КП	гu	Ay	Cu		511	30	16	•	ve
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
				т.	\ A /					A				D:		A 4	D
CS	ва	La	Hī	Ia	VV	ке	US	Ir	Ρτ	AU	Hg		PD	BI	PO	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112						
E		^				Dh		N/11			••						
Fr	Ra	AC	Rĭ	מט	ъg	вп	ПS	IVIT									

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
C	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
ד	ħ	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Stepwise resonant laser ionization of Tin

1 MW target for 10¹⁵ fissions/s

Sn yields from a UC target

Ref. Ulli Koester

Today at ISOLDE:

¹³²Sn⁺ intensity:

5.0E8 per s

with 2.5 μA of 1.4 GeV protons

onto 12.7 mm W converter

(release efficiency about 80%)

EURISOL:

1.0 GeV protons instead of 1.4 GeV	0.7
1 mA protons	400
cylindrical target	10
RILIS improvement	5
Total	14000
Expected intensity:	

7E12 per s = 1 μ A ¹³²Sn⁺

Hg-jet p-converter target

Synergies with targets for SNS, Superbeam, v-factory, μ -collider,... Helge Ravn CERN, EP

1-2.2 GeV, multi-MW protor drive (CEBN 9PL)

Several direct target stations (ca. 100 kW)

One Hg spallation + fission target station (>1 MW, i.e. 1E15 fissions/s)

Multiple user operation in parallel

Low-energy beam area

Post-acceleration with LINAC up to ca. 10 A.MeV

Post-acceleration to ca. 100 A.MeV with LINAC or cyclotron

Fragmentation of post-accelerated RIBs

Commissioning: 2015?

Helge Ravn CERN, EP

ISOLD

EURISOL target layout

Very similar to the target stations of the ISOL facility ISAC in operation at TRIUMF

Production rates in the EURISOL Mercury target

Radio- isotope	Half-life T _{1/2}	X-section (mb)	Production rate (per s)	Alternative production processes		Applications
100 1-		0.505.00		(-)		
192-Ir	74 d	2.58E+00	1.0E+14	(Π,γ)	reactor	Sealed sources for industry and cancer therapy
188-W/Re	69 d	6.90E-02	2.7E+12	(2n,γ)	HFR	Radio-immuno-therapy with 188-Re
178-W/Ta	22 d	8.08E+00	3.1E+14	(p,4n)	accelerator	Generator with potential in PET
177-Lu	6.7 d	6.31E-02	2.4E+12	(n,γ)	reactor	Therapy with labelled antibodies and peptides
166-Ho	25.8 h	5.30E-03	2.0E+11	(n,γ)	reactor	Therapy with labelled antibodies and peptides
149-Tb	4.12 h	9.21E-01	3.5E+13			Targeted Alpha Therapy, single cancer cell targeting
148-Gd	74.6a	5.31E-01	2.1E+13	spallation	accelerator	Low-energy alpha sources
153-Sm	46.75 h	1.41E-03	0.6E+11	(n ,γ)	reactor	Therapy of bone metastases
127-Xe	76.4 d	9.22E-02	3.5E+12	(p,x)	accelerator	SPECT, lung ventilation and brain perfusion
117m-Sn	13.6 d	1.78E-01	0.7E+13	(n,γ)	HFR	Systemic radionuclide therapy
99-Ma/99m-Tc	66 h	2.78E-01	0.6E+13	(n, f)	reactor	Most important radionuclide for nuclear medical imaging
89-Sr	50.5 d	5.39E-01	2.1E+13	(n,γ), (n,p)	reactor	Palliative therapy of bone metastases
82-Sr/Rb	25.5 d	1.36E-01	0.5E+13	(p,4n)	accelerator	Generator, PET, myocardial perfusion
68-Ge/Ga	288 d	9.38E-02	3.6E+12	(p,2n), spall.	accelerator	Different PET imaging procedures, calibration of PET
67-Cu	61.9 h	3.83E-01	1.5E+13	(p,γ)	accelerator	Therapy with labelled antibodies and peptides
44-Ti/Sc	47.3 y	1.77E-03	0.7E+11	spallation	accelerator	Generator, great potential for PET
32-Si	101 y	3.03E-02	1.2E+12			Important isotope for R&D and technical application
26-AI	7.16e5 y	6.05E-03	2.3E+11	(p,n)	cyclotron	Important isotope for R&D and technical application
28-Mg	20.9 h	1.45E-02	0.6E+12			Important isotope for R&D

Options for harvesting radioisotopes Beam dump in for off line me

Beam dump irradiations of targets for off-line mass separation

Operation of dedicated target stations optimised for on-line production of selected nuclei

Extraction of nuclei from the liquid metal flow of the converter target for off-line mass separation

Extraction of nuclei from spent target units for offline mass separation

Parasitic collections online from the unused beams in the mass spectrum

Extraction of nuclei from other radioactive waste

EURISOL 2020(?) 2×7200 hours Of radioactive ion beam

Conclusion and outlook

- •A large amount of data has shown the strength of medical application of carrier free lanthanides.
- It is timely to introduces mass separation as a chemical unit operation in the industrial isotope production line for quality improvement.
 Present research facilities can cover the upcoming need of carrier free rare isotopes in amounts that allows the development and testing new radiopharmaceutical products.
- A number of new exotic nuclide can be made available for medical research.
 Large scale industrial production can be made by harvesting the nuclei of interest from spent targets in present and future physics research facilities.
 Variants of the ISOLDE target and ion-source techniques lend itself to this kind of industrial isotope production.
- •A program of validation securing of these new production methods should be started now so that they are ready in time for future marketing and mass production.
- •A joint technology transfer enterprise between industry and CERN/ISOLDE during a 10 y period has been proposed.

581; 307; 762	γ 326; (200)	1114 728 01 18 062,726 v400 1-2210 01 0074	JP	Vertis 142	a 19	- 220	α 1.83 0.3.6	opor			or 2,5	971,4; 1,6 9211; 114; 270						p= 3.3; 4,2 y 181, 419 955; 67		
Pr 136 13,1 m	Pr 137 76,6 m	Pr 138 2,02 h 1,44 m	Pr 139 4,5 h	Pr 140 3,4 m	Pr 141 100	Pr 142		Pr 144 7,2.m 17,3 m	Pr 145 5,98 h	Pr 146 24,0 m	Pr 147 13,6 m	Pr 148		Pr 150 -54 6.15	Pr 151 18,9 s	Pr 152 3,8 s	Pr 153 4,3 s	Pr 154 2,3 s	Pr 155	
		(11.17), (11	e; 8+1,1 7 (1347; 1631 0		o 4 + 7,5	$\frac{p^{-2,2}}{p^{-4}} = \frac{p^{-2,2}}{p^{-4}}$		19 59 16 - 10 17 - 10 17 - 10 18 - 10 19 - 10												
Ce 135	Ce 136 0,19	Ce 137	Ce 138 0,25	Ce 139 56,5 s 137,5 d	Ce 140 88,48	Ce 141 32,50 d		Ce 143 33,0 h	Ce 144 284,8 d	Ce 145 2,98 m			Ce 148 48 s p=1.7	Ce 149 5 s			Ce 152 1,4 s	Ce 153	Ce 154	

References and acknowledgements

LHC & CERN

•The ISOLDE collaboration at CERN, Switzerland: http://isolde.web.cern.ch/ISOLDE/frames/isoframe.html •The European EURISOL project http://www.ganil.fr/eurisol/index.html •TARGISOL http://www.targisol.csic.es **•TRIUMF** Canada •http://www.triumf.ca/ •The US Rare Isotope Accelerator project RIA: http://www.orau.org/ria/ •MEGAPIE Collaboration PSI, Switzerland

Geneva Airport