

Design of Solid Spallation Targets at PSI

G. Heidenreich

Paul Scherrer Institut, 5232 Villigen PSI

Switzerland

Neutron Spallation Sources at PSI (SINQ)

Neutron Spallation Sources at PSI (UCN)

Layout of the SINQ & UCN Solid Targets

<u>SINQ-Target:</u> Continuous operation:

Beam parameter:

(1.4 mA 570 MeV) \rightarrow 0.8 MW beam power on target Gaussian beam spot (cut by collimator II); Peak current density ~35 μ A/cm²

UCN-Target: Pulsed operation:

Beam parameter:

8 seconds beam on (2 mA 590 MeV) \rightarrow 1.2 MW beam power on target; 1% duty cycle Gaussian beam spot (cut by collimator at R = 2.5 σ); Peak current density 20 μ A/cm²

SINQ - Target

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich

~70 % of the beam power deposited in the target assembly

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich

Layout of the Target Array

Relative thermal flux gain	Zy-2 rods	Pb-SS304-Cladding	Pb-Zy2-Cladding
	(64.5% Zr, 35.5% D2O)	(48% Pb, 11.5% SS304, 34.9% D2O, 5.6% Void)	(42.9% Pb, 16.7%Zr, 35.5% D2O, 4.9% Void)
UCN ¹⁾	1.00 *)	1.38	1.61
SINQ ²⁾	1.00 *)	1.42	1.63 **)

*) ~ $4.5 \cdot 10^{13}$ n/cm^{2/}s/mA

**) ~ 20 % flux gain for MEGAPIE

- 1) M. Wohlmuther, G. Heidenreich *Design and neutronic performance of the spallation target of the ultracold neutron source UCN at PSI*, ICANS-XVII, April 25-29, 2005 Santa Fe, New Mexico
- E.J. Pitcher, J.R. Lebenhaft, E.H. Lehmann, An Investigation of Neutron Spallation Targets in SINQ using MCNPX, ICANS-XVI, Proceedings of ICANS-XVI, Düsseldorf-Neuss, Germany May 12-15, Vol. III, p.1191, ISSN 1433-559X (2003).

Thermo-hydraulic operating regime of the target array

Thermo-mechanical design of the Pb-filled tubes for pulsed operation in the UCN-target

Design steps:

- > Measurement of stress-strain relation of Pb $\Rightarrow \sigma = f(T, d\epsilon/dt)$
- Calculation of temperature response of Pb
- Calculation of stress response in the tube wall

Measured stress-strain relations of Pb

PAUL SCHERRER INSTITUT

Temperature & stress response due to the heat load by the proton pulse (peak current density 20 μ A/cm²)

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich

Temperature & stress distribution

Hydrogen production in the target array

Beam window design

CFD - Analysis

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich

Thank you for your attention !