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Background

All studies suggest that, to push frontier in proton drivers to an order higher
than the existing ones, one must maximize the yield at the source

*Proton drivers with beam power up to 4 MW could become reality

*Challenge in finding suitable target material/configurations that will
withstand intense heating, shock waves and radiation damage

*Experience suggests that without R&D surprises have a way of coming back



WHY SIMULATION ?

*Because of complex geometries the ONLY way to identify trouble spots is
through simulation

*Given that we DO NOT have the high power yet (we just talk about it) it is
hard to know how target materials/target systems will REALY respond

*By benchmarking simulations at the available lower beam power we can
REASONABLY extrapolate the processes (as much as the state of knowledge
allows)

ONE thing that we cannot really do is identify FAILURE (failure means
different things to different people)



* Find best possible materials that can be used as
targets/beam windows under extreme conditions

e Experiment with selected materials, measure
responses

« Validate prediction models against measurements to
gain confidence Iin predicting material response
and/or failure at anticipated extreme conditions

e USE experimental results to benchmark energy
depositions predicted by the various Monte Carlo
codes



TARGET CONCEPTS

Solid Targets for Muon Collider/Neutrino Factory
*Graphite, carbon-carbon, rotating band

*Beam windows
Solid Targets for the Neutrino Superbeam (CC composite)

«Targets for Pulsed Neutron Sources
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Recorded strain in the FRONT ATJ graphite target at gauges 180 deg. apart
Intensity = 2.9 TP
Beam Spot = 2.46 x 0.97 mm rms
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First mode (bending) of the 30.7 cm long ATJ Graphite rod
Hodal frequency = 395 Hz
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Record of strains in the middle of the graphite rod (left)
shows a bending frequency between 380-390 Hz

The prediction of the detailed model that implements the
supporting/holding fixtures of the target as close to the
real setting as possible, predicts a bending frequency of
395 Hz

Also from the record, the axial “ringing” of the target has
a period of 260 to 265 microseconds. The fundamental
axial period T=2L/c (where L is target rod length and c is
speed of sound) is approximately 261 microseconds

The radial “ringing” on the other hand, which from
theory is calculated at 150 KHz (or 6.625 microsecond
period), is visible only in the strain record filtered by the
500 KHz acquisition
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Recorded strain data (100 KHz_vs_500KHz) in the FRONT ATJ target (mid-length) Recorded strain in the FRONT ATJ graphite target (mid-length)

Intensity = 1.7 TP Intensity = 1.7 TP
Beam Spot =1.7 x 0.7 mm rms Beam Spot=1.7 x 0.7 mm rms
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Recorded strain in the FRONT ATJ graphite target (mid-length)
Intensity =1.7 TP
5 Beam Spot=1.7 x 0.7 mm rms
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Strain predicted (ANSYS) in the middle of the FRONT AT.J graphite
target rod using the new heam spot (0.3 x 1mm) and 1.7 TP intensity
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microstrain

Strain predicted (ANSYS) in the location of gauge 5 (front of ATJ
target rod) using new heam spot (0.3 x Imm) and 1.7 TP intensity
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micro-strains

Recorded strain (500 KHz) in the FRONT C-C Target Rod
Intensity = 1.6 TP
Beam Spot = 1.7 x 0.7 mm rms
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Carbeon-Carkon
block
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cooling water
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Carhon-Carbon
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Transient temperatures in the CC target (T_cl = target center ; T_s = target surface)
intercepting a 100 TP/28 GeV/2mm RIS proton beam. Target diameter = 1.2 cm
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| Temperature distribution in the
CC_target Horn/Target arrangement prior to

the arrival of the proton heam
(peak current = 240 kA)
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Fiberoptic Strain Gauge Armangement in the 2"
diam. Beam Window

active strain
[mirror] element




172 beam size {m)
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vonMises Shock Stress in a 10-mil thick SSTL Window
Beam = 16 TP/24 Gev with 0.5mm RMS sigma
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Figure above depicts the tight beam spot requirement (0.5 x 0.5 mm rms) for
target experiment at AGS

— 100 ns

Induced shock stress in a window structure by 16 TP intensity beam and the
spot above will likely fail most materials in a single short pulse ( ~ 2 ns)

Figure (right) depicts prediction of vonMises stress in a stainless steel
window for the above conditions. Initial shock stress is ~ 3 x yield strength of
material !!



von Mises stress at the end of 2 nano-sec pulse

von Mises stress 230 nsecs after pulse

von Mises stress 700 nanosecs after pulse
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*No matter how thin the window is, the
reverberation of stress between surfaces is
the key issue

» vonMises stress amplitude depends on
the spot size (initial compressive load
amplitude), thickness of window, speed of
sound and pulse shape

* the measurement of strain on the surface
IS to be used as benchmark of the ability of
the model to predict the stress field in the
heated zone

* the radial response (stress/strain) and the
ability of the pulse to relax depends on the
spot size and the pulse structure

» smaller spot size does not necessarily
mean larger response at a distance

» smaller spot size definitely means higher
stress field in the vicinity of the heated
zone



Mechanism of induced shock stress in windows




Window_shock?




FAST proton beam interacting with window and depositing energy in small spot
inducing shock waves

Based on a 24 GeV/16 TP/0.5 mm rms beam MOST materials could fail with a
single pulse
Though thin, failure in window governed by through-thickness response
Sound speed, material thickness and pulse structure are critical elements
Material search combined with analytical predictions led to the following
materials for testing

— Inconel 718 (Imm and 6mm thickness to study the effect)

— Havar

— Titanium Alloy (highest expectation of survivability)

— Aluminum

Aluminum (3000 series) selected as the one that COULD fail under
realistic expectations of AGS beam during E951 (~ 8 TP and 1mm rms)



0.3 x lmm rms heam spot
ORTENTATION yet unknown

\




Aluminum Window Strain Waves
(beam spot ~ 0.3 x 1mm)




Aluminum Window Strain Wave Simulation

Window_F951
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Strain Data in Aluminum Window - Gauge 4 - Shots: 57 & 58
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micro-strains

500 KHz Strain Data in the 1-mm Inco-718 Window
Beam Intensity = 2.5 TP
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micro-strains
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Measured Strain (500 KHz) in the Havar Window (gauge #1)
Strains from back-to-back pulses of intensity 2.4 TP
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Lesson: You better have the necessary resolution, or ...




Illustration of sampling rate on data prediction
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Wacuum Gap

De-coupled
Cryogenic
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Beryllium Reflector

Edge-Cocled Target

SOURCE CHARACTERISTICS

PROTON SOURCE

- ENERGY = 24 GeV

- MAXIMUM SINGLE PULSE INTENSITY - 16 x 10" PROTONS

- IMPLIED MAXIMUM ENERGY PER PULSE = 64 kJ

- PULSES CAN BE DELIVERED IN A VARIETY OF SEQUENCES AND FEEQUENCIES

PROPOSED NEUTRON SOURCE

- MAXIMUM NEUTRON PRODUCTION IN FIRST 15 em OF TARGET
- REQUIRES DENSE TARGET DUE TO HIGH PROTON ENERGY

- IMPLIES EDGE COOLED TARGET CONFIGURATION

- POSSIBLE TARGET MATERIALS

Material Density (g/cc) Thermal capture (b} Resonance Integral (b)
Tantalum 166 0.5 60.0

Tungsten 103 124 3520

Fheniurn 2053 207 2310

Olsrninrn 2248 16.0 1200

Iridinm 2242 4250 21500

Ilercury 1355 3720 730

Lead 1135 0171 0.1z

Thorinra 113 137 850

OPERATING EXPERIENCE WITH A SOLID IRIDIUM ANTI-PROTON TARGET AT CERN
WILL FOEM BASIS FOR CURRENT DESIGIN

TARGET REFLECTOR AND MODERATOR DESCRIPTION

EITHER TARGET IS EDGE COOLED - COOLANT FLOWS IN A SPIRAL COOLANT DUCT

INNER REFLECTOR OF BERYLLIUM - EXTENDS 10 cm IN ALL DIRECTIONS BEYOND TARGET AND
MODERATOR.

CRYOGENIC MODERATOR EMBEDDED IN THE BERYLLIUM REFLECTOR. - TWO TYPES TO BE
CONSIDERED
o LIQUID HYDROGEN (FARA) 20 K (REPRESENTED BY APPROPRIATE SCATTERING KERNEL)
o ANMMONIA AT 20 K (REPRESENTED BY A GAS MODEL AT 20 K)
o MODERATORS ENCLOSED IN A DOUBLE WALLED VESSEL WITH A CADMIUMDE-
COUPLER.

TARGET DIAMETER DETERMINED BY A PERFORMANCE FIGURE OF MERIT - BASED ON NEUTRON
CURRENT LEAVING FRONT FACE OF MODERATOR (NOEMALIZED TO CASE 1)

Solid iridium Iridium particle

Case Target ODGm)  FOM* nip* FOM np
110 10 27 0542 226
220 1351 264 1187 249
330 1.434 21 1250 262

TARGETS WITH 3 em OD WILL BE CONSIDERED IN THIS STUDY.



PFPOWER DEPOSITED IN THE TARGET REFLECTOR AND
MODERATOR ASSEMBLY

COMPONENT POWER. (WATTS)*
Solid Iridium target 31,848
Titanium clad 407
Cooling water 531
Aluminum containment 257

Vacuum chamber 510

Cd de-coupler 1,253
Moderator container 125

Liguid hydrogen moderator o0

Taotal Be T,111

* bgsuming an average power of 100 kW

ENERGY DEPOSITED IN PARTICLE BED TARGET PER PULSE

ENERGY DEPOSITED PER PARTICLE AMD ASSOCIATED LEAD, FOR THE VARIOUS LAYERS IV A
HEXAGONALLY ORDERED PARTICLE BED, PER PULSE (ASSUMING 6.242 X 10°* PROTONS PER PULSE)

Layer rmmber  Number of units Particles (J/cc) Lead {J/cc)

1 1 438 257

2 o i1 120

3 12 59 48

| 13 T 4

5 24 3 2

[ 30 1 1
Remainder v 1




Temperature rise resulting from a single
micropulse of the AGS pulse train on the
iridium target

Starting temp = 300 K

B
2

Steady state temperature distribution in
the solid iridium target
Cooland temperature = 300 K
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TUNGSTEM PARTICLE BED SPALLATION TARGET TUNGSTEN PARTICLE BED SPALLATION TARGET

Tz = 01501

Temp(C} @ 150 ns

Fringe Levels
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*Utilize poroelastic equations of saturated medium
*Assess pulse attenuation vs. microscopic geometric parameters

*Validate using a controlled experiment

AGL File
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Coef. Thermal Expansion, 10-6/K
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Displacements per Atom

Activation Measurements
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Solid Target Option: Super-Invar Irradiation Study

— ms==nON-irrad #1)
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Super-Invar Irradiation Study — Temperature Effects

—non treated Invar
— Temp (300 C)
——Temp (500 C)

S oS
AN




	Simulations of Pressure Waves induced by Proton PulsesIn search of the answer to the fundamental question:
	Goals
	TARGET CONCEPTS
	Graphite Targets - E951
	ATJ Graphite Energy Depositions
	ATJ Graphite Strain Data Verification of fundamental modes of target response
	ATJ Graphite Strain Data
	ATJ Graphite Strain ComparisonPrediction model has not implemented damping from supports or material
	ATJ Graphite Strain Data - Predictions
	Strain Comparison: Graphite vs. Carbon-Carbon
	Carbon-Carbon Strain Data
	E951 WINDOW TEST Station Set-UpFiber-optic Strain Gauges & Double window vacuum monitoring
	What Triggered the Window Experimental Effort
	Mechanism of induced shock stress in windows
	Mechanism of induced shock stress in windows
	Issues and Material Matrix selection
	Finite Element Models to Capture the Dynamic Response of Windows
	Aluminum Window Strain Waves  (beam spot  ~ 0.3 x 1mm)
	Aluminum Window Strain Wave Simulation
	Aluminum Window Strain Data Experimental data vs. prediction using the new beam spot (0.3 x 1mm)
	Recorded Aluminum Window Strain Data in back-to-back pulses
	Measured and predicted strains in the 1mm thick Inconel-718
	RECORDED strains in the Havar Window (back-to-back pulses)
	Lesson: You better have the necessary resolution, or …
	Illustration of sampling rate on data prediction

