

Horn R&D for 2002-2003

Simone Gilardoni CERN – AB-ABP DPNC Université de Genève

For the CERN Horn working group presented by H. D. Haseroth

Targetry WS Long Island

Nufact + SuperBeam

- Same technological issues:
- Lifetime estimation
- Target-horn integration

- The target is not point-like:
 - Normally 1-2 interaction lengths
 - Order 20-30 cm for heavy targets (Hg)
- Particle produced with large energy spread
 - Typical transverse momentum 250 MeV/c
 - Typical energy around 1 GeV (even less)
 - Large divergence
- In any case, from Van der Meer:
 - Max angle for a given momentum depends only on the square root of the current

Target INSIDE for low energy

• Max p_t more or less independent from the energy

Horn first prototype

8

- First "inner" horn 1:1 prototype
- Power supply for Test One: 30 kA and 1 Hz, pulse 100 μs long
 - ✓ First mechanical measurements
 - Test of numerical results for vibration
 - ✓ Test of cooling system
- Test Two: 100 kA and 0.5 Hz
 Testing during this week
- Last test: 300 kA and 50 Hz

Unknown schedule

dove

Goal: Horn Life-Time 6 weeks (2*10⁸ pulses)

First prototype ready

Thanks to the CERN Workshop

Targetry WS Long Island

Simone Gilardoni

8-12/09/2003

• AA 6082-T6 / (AIMgSi1) is an acceptable compromise between the 4 main characteristics:

Not compatible with Mercury

Electrical and water connections

Inside the neck

Targetry WS Long Island

Lateral view

— Targetry WS Long Island

First discharger unit : 2 units in parallel

Targetry WS Long Island

Simone Gilardoni

8-12/09/2003

Power supply scheme

From scheme to reality

P.S. test on dummy load

Horn eigenfrequencies from horn "sound"

Method validation: CNGS

Targetry WS Long Island

Laser Measurements (prel.)

CNGS horn

Laser vibrometer

— Targetry WS Long Island

Simone Gilardoni

8-12/09/2003

Preliminary vibration meas.

New campaigns of measurements with laser vibrometer and microphone with new power supply. Any suggestions how to measure a surface that you cannot touch and with water flowing, the INNER conductor ?

Next step: 100 kA - 0.5 Hz

- Ch1: Current of unit one measured with current transformer. (10kA/div)
- Ch2: Current of unit two measured with current transformer. (10kA/div)
- M1: Voltage across thyristor. (1kV/div)
- M2: Sum of both currents. (25kA/div)

Targetry WS Long Island

Simone Gilardoni

24

LAL Horn R&D

- Physicists: J.E Campagne, A. Cazes (Ph. D),
- Engineers: G. Macé, S. Wallon & J. Bonis, M. Omesh,...
- Previous experience: the CNGS Horn/Reflector

Other IN2P3 members: J. Dumarchez (LPNHE), D. Autiero (IPNL), S.Katsanevas(IN2P3-adm)

Targetry WS Long Island

Conclusions

- Results of last year for horn+power supply
 - Construction and test at 30 kA 1 Hz 100 μs
 - First evaluation of horn eigenfrequencies
- Horn CERN program for this year:
 - Measurement with new power supply
 - "Working point" with CNGS power supply
- New friends in the game, LAL draft program:
 - Secondary particles collection simulation
 - Electrical power supply studies
 - Mechanical Simulation
 - Thermal Simulation

Horn life-time precise estimation

Targetry WS Long Island

Horn failures ... When? Why?

AD horn (see Microcosm) 300 kA, 0.5 Hz, 1M pulses

Targetry WS Long Island

Reasons for horn failure

- Fatigue limit
 - ✓ Resonances between current and horn eigenfreq.
 - stress due to electro-magnetic forces
 - Max pressure: ≈14 MPa (140 kg/cm²)
- Thermal stresses
 - ✓ Joule losses: 39 kW
 - particle energy deposition (still to be evaluated)
- Neutron irradiation
 - Swelling
 - Mechanical properties variation

Main Parameters

 Radius of the waist 	40 mm	
 Peak current 	300 kA	
 Repetition rate 	50 Hz	
Pulse length	93 µs	
 Voltage on the horn 	4200 V	
 rms current in the horn 	14.5 kA	
 Power dissipation (by current) 	39 kW	
•Skin depth	1.25 mn	า
•Total length		1030 mm
•Outer diameter		420 mm
 Max diameter (electrical connection flat 	nge)	895 mm
 Free waist aperture 		56 mm
 Waist outer diameter 		80 mm
 Average waist wall thickness 		6 mm
 Double skin thickness 		2 mm
- Targetry WS Long Island - Simone Gilardoni - 8-12		

8-12/09/2003 -

DPA for spallation sources

Targetry WS Long Island

Neutron damage

Typical neutron spectrum

W Converter 150 mm

Same for our case

Targetry WS Long Island

$$DPA = 0.4 \frac{T_{dam}(MeV - barn)}{T_{d}^{a}(MeV)} \Phi\left(\frac{n}{cm^{2}s}\right) t(s) = \sigma_{damage} \Phi t$$

 T_{dam} : damage energy cross section

 \rightarrow Total available energy to cause displacement

 $T^a{}_d$: effective threshold displacement energy \rightarrow Energy required to displace an atom (AI = 27 eV)

Neutron damage

Damage cross section

Neutron spectrum

Large neutron fraction & damage cross section is high →Same damage from neutrons as SNS target container — Targetry WS Long Island — Simone Gilardoni — 8-12/09/2003 — 35

Simone Gilardoni

Neutron flux from Hg typical of a Neutron Spallation Source (ESS, SNS)

Approx 10²⁶ n/m²

Targetry WS Long Island

8-12/09/2003

- Mechanical tests of Aluminum-Alloys before and after irradiation
 - Variation of the mechanical parameters
 - CERN is not equipped for such measurements
 - Isolde as irradiation facility but somewhere else for tests
- Define material as a wall between Aluminum and Hg
 - Highly "active" environment:
 - Mercury splashing around
 - Minimum thickness but high mechanical resistance (Ti-Alloys? Stainless Steel? See ESS, SNS target)

Energy deposition in the conductors

Bene meeting - 8th of july 2003

