## Rare Isotope Production at RIA

G. Bollen
National Superconducting Cyclotron Laboratory NSCL
Michigan State University

#### • RIA – an overview

- RIA-Science
- Rare Isotope Production
- RIA Facility

### RIA target issues

- Fragmentation targets
- Beam dumps
- ISOL targets

#### Conclusion



## RIA – an intense source of rare isotope





#### **Corner stones of the RIA Science Case**



- The Nature of Nucleonic Matter
- The Origin of the Elements and Energy Generation in Stars
- Tests of the Standard Model and of Fundamental Conservation Laws
- Isotopes to Meet Societal Needs



### **Nature of Nucleonic Matter - Nuclear Structure**





### **Nature of Nucleonic Matter - Binding Energies**





Masses and Trends in nuclear binding energies

Limits of stability

Nuclear structure

Key data for nuclear astrophysics

### How were the heavy elements from iron to uranium made?



Question: Is this difference due to shell quenching for neutron-rich nuclei, or a problem with astrophysical model?



## **Tests of the Fundamental Symmetries in Nature**



Specific nuclei offer new opportunities for <u>precision</u> tests of:

CP and P violation –
 baryon asymmetry in the
 Universe

#### Standard Model <u>Tests</u>:

- Unitarity of CKM matrix
- Physics beyond V-A
- $\sin^2\Theta_W$  at low q



# **Applications of nuclides from RIA**

- Development of techniques and manpower for dealing with radioisotopes.
- Stockpile stewardship allow measurements of necessary cross sections to insure the reliability of simulations.
- Allow testing of new radioisotopes for medicine.
- Tracers for various studies.
- Soft doping, etc.





Workshops at Los Alamos and Lawrence Livermore Labs



## Goal: one facility for most of the key nuclei



# **Recipe: Combine Production Mechanisms**

**Driver Accelerator** 

**ISOL** 

Target + Ion Source **Driver Accelerator** High Resolution Separator **Post** Acceleration

**Target** 

In-Flight

Fast beams

Fragment Separator

Fragment Separator

Gas-Stopping





# ISOL - In-Flight - Gas Stopping

## ISOL: ISOLDE HRIBF ISAC

. . .

## In-flight: GSI RIKEN NSCL

**GANIL** 

Gas-Stopping:

<u>ANL</u> <u>MSU</u> RIKEN

- Highest intensities closer to stability and very good beam quality
- Post-accelerated beams with small beam energy spread for fusion studies and nuclear astrophysics
- Can use chemistry and selective laser-ionization to limit the elements released
- Production targets optimized for element and isotope
- Provides beams with energy near that of the primary beam
  - For experiments that use high energy reaction mechanisms
  - Thick secondary targets, kinematic focusing
  - Individual ions can be identified
- Efficient, Fast (100 ns), chemically independent separation
- Capture in storage rings
- Production target is relatively simple
- Beams from in-flight production
- Chemically independent
- Intensity limits half-life limitation ← still to be studied

**NSCI** 

# **Optimum Mechanism for Each Isotope**

Optimum production method for low-energy beams

- Standard ISOL technique
- Two-step fission ISOL
- In-flight fission + gas cell
- Fragmentation + gas cell



+ Fast beams with high intensities

### **Worldwide Unique Feature**

most other facilities have only one production mechanism



## Rare Isotope Accelerator - RIA

- Most intense source of rare isotopes
  - $\triangleright$  High power primary beams protons to U at 100 kW and E > 400 MeV/nucleon.
  - > Possibility to **optimize the production method** for a given nuclide.
- Four Experimental Areas (simultaneous users)



Experimental Areas:

1: < 12 MeV/u 2: < 1.5 MeV/u 3: Nonaccelerated 4: In-flight fragments



# **Towards realizing RIA**

- R&D work going on (Accelerators, Sources, Targets, ...) (DOE + local)

  \*\*RIA R&D Workshop Washington August 2003\*\*
- Layout options under study at ANL and MSU



- 2 Fragment separators
  - Fast beam
  - Gas stopping
- 2 ISOL stations
  - → 3 in latest MSU layout





# **RIA Layout**





### **Driver Linac Beam Parameters**

| Ion | A   | Q     | I <sub>ECR</sub> (pμA) | E <sub>final</sub> /A<br>(MeV) | Final Beam Power (kW) |                 |
|-----|-----|-------|------------------------|--------------------------------|-----------------------|-----------------|
|     |     |       |                        |                                | 1 charge state        | 2 charge states |
| Н   | 1   | 1     | 540                    | 1019                           | 400                   | -               |
| Xe  | 136 | 17    | 12                     | 470                            | 400                   | -               |
| Au  | 197 | 23+24 | 5.5                    |                                | 241                   | 483             |
| U   | 238 | 28+29 | 1.5                    | 400                            | 77                    | 154             |

Beams from protons to Uranium
Beam power up to 400 kW or more



# Beam distribution to targets

- Accommodate target area developments & to increase flexibility
  - 100% to any one, 50%/50% to any two, 50%/25%/25% to any three, 25%/25%/25%/25% to any four



# **Fragmentation Area Layout**



- Productions Targets
  - Very high power density ~ 4 MW/cm<sup>3</sup>
    - Small spot size reduce geometric aberrations
    - ~20% of beam power lost in target
- Beam dumps
  - medium spot size, high power density ~ 50 kW/cm<sup>3</sup>, not localized
- High performance & radiation resistant magnets required R&D challenge
- Characterization of radiation fields required to support R&D efforts



# High power fragmentation targets

### **Solid targets**

Rotating carbon target for up to 100 kW beam power (RIKEN)

T. Kubo, NIM B204 (2003)97

A. Yoshida et al, RIKEN Accel. Prog. Rep. 35 (2002) 152

Li-cooled Be target for 4 kW beams at the NSCL ANL – MSU development

J.A Nolen et al., NIM B204 (2003) 298

→ talk by J Nolen







# High power fragmentation targets

## Windowless liquid metal targets ANL – development

J.A Nolen et al., NIM B204 (2003) 293

→ talk by J Nolen



- Very high power density  $\sim 4MW/cm^3$ 
  - Small spot size reduce geometric aberrations
  - ~20% of beam power lost in target
- Development of targets for lighter beams required!



# Fragmentation beam dumps

### Unreacted primary beam ....

80% of initial beam power goes into dump Range of U (400 MeV/A)  $\approx 5$  -10 mm (C - Cu)

Needs R&D

... and unwanted secondary ions

Typically a few kW beam power

NSCL A1900 beam catcher-bar for 4 kW





# **ISOL** beam production

#### **Basic Scheme:**



- Realized at ISOLDE, HRIBF (<10 kW), ISAC (<50kW)
- Planned for RIA (400 kW), EURISOL (100kW + 4 MW)

ISOL target/ion source development has happened since > 30 years

- More elements
- Shorter release and higher yields,
- Higher selectivity and efficiency
- Higher power

→ H. Ravn, R. Bennet



# ISOL beam production at RIA





- 3 ISOL stations with pre-separators
  - 400 kW capability
  - Staged realization likely
- 2 high resolution mass separators
- 2 experimental areas
  - Stopped beam experimental area
  - Post-accelerated beams

### **R&D** issues target area

- Targets + beam dumps
- Remote handling
- Classification



# **ISOL** Target station



- $\leq 400 \text{ kW ISOL station}$ :
  - Vertical vs horizontal system, shielding, how many stations
  - Remote handling fast target changes lifetime of components
  - •
- Needs more detailed design studies and R&D Now!



# **ISOL** targets for RIA

## Targets for spallation reactions

- Metal foil targets
   (RIST/ISOLDE, J. Bennet, P. Drumm, H. Ravn, ISAC, P. Bricault, M. Dombsky)
- Oxide-Fiber targets, Composite targets (ORNL, ISOLDE)

**–** ...

# Production of fission isotopes

- 2-step UC targets with neutron converters (ISOLDE, ANL, ORNL)
- Targets for Heavy Ion Beams

High power capability
Short release times
High efficiencies



# **Metal foil targets**

RIST target: Ta foil target 100 kW beam power (30 kW dissipated)

J.R.J Bennet et al, NIM B126 (1997) 105



## ISAC Ta foil target for 50 kW beam

P. Bricault et al, NIM B204 (2003) 219

Radiation cooling good at high powers ( $\sim T^{4)}$ 

Max. 450 W/cm<sup>2</sup> at 3000 K

Realistic: 30 W/cm<sup>2</sup> at 2000 K

Which cooling schemes at higher beam power?



# **Targets for fission products**

Low beam powers: protons on UCx target matrix

### **Principle of 2-stage targets:**

- Neutron converter for neutron production and dissipation of beam power
- Surrounding blanket of fissionable material

In use at ISOLDE  $\rightarrow$  H. Ravn

#### RIA R&D:

Prototype for ISAC (50 kW)
Full system under study for RIA

**ANL-Techsource-ORNL** 

→ J. Nolen

Li cooled Tungsten converter

UCx blanket



## **Alternative: Mercury converter targets**

EURISOL www.ganil.fr/eurisol/ Neutrino beam development

→ H. Ravn



#### **Key advantages of Mercury**

- It remains liquid which eases target changes and handling

- It is not flammable, which is a decisive safety point
- Increased potential for isotope recovery

. . .

Window-less or window version?



**Benefit from SNS work** 



# **Status of RIA – Targetry**

- R&D has started but it is at its very beginning
- 100 kW concepts appear realistic
- It remains open which > 100 kW targets can be built and how they will look like
- Continue with present R&D get and follow new ideas
- Benefit from R&D at other RI facilities, spallation neutron sources, neutrino beam facilities, ...

This workshop!

- Important at early stage:
  - consider impact of possible target options including remote handling, safety etc
  - Make a flexible and expandable layout of RIA



# ISOL target development for RIA – a wide field

### ISOL target R&D

High power issues

Production and release

- Evaluation of Cooling schemes
- Material research: experimental tests of known and new materials for targets and target containers
- Considering **target options** solid or liquid metal converters?
- Further development of codes for the **modeling** of target issues
- Design of prototype targets
- **Power tests,** study of **release times** of prototype targets and **yield** measurements
- ...
- **Develop tools** that can help to make target development more efficient



## ISOL target development with fragment beams

### **Proposed scheme**

NSCL fast RI beams (100 MeV/u)



- Implantation of practically any isotope into target materials, target systems, prototypes ...
- Localized implantation
- Tests very close to realistic conditions if target heated
- Low radiation level and radioactivity build up Hands-on experiments Fast iterations

Not a replacement of on-line tests but will help to do fast prototyping

#### Scenario for an ISOL test station at the NSCL



- Flexible front end design for mounting different types of targets
- Mass separator with modest resolving power
- Counting station for RI identification
- Rotation and translation degrees of freedom



## ISOL R&D opportunities with fragment beams

### **Examples:**

- Diffusion and effusion studies (different materials, geometry and temperature)
- Investigation of formation of molecular sidebands
   (\*C + TaO = Ta + \*CO, \*S + Sn = Sn\*S, \*Si + CeS = \*SiS + Ce,
   \*O + C = C\*O, or \*Al + F = \*AlF)
- Disentanglement of long-term effects of temperature and radiation damage on target performance
- Test of RIA target prototypes
- Test of targets used or under development at other ISOL facilities



## ISOL R&D opportunities with fragment beams

- Fast fragments for ISOL beam production in parasitic mode
  - Low-power primary beam + fragmentation target or beam from fragment separators
  - Catchers optimized for fast release
  - Not a primary production scheme for RIA, but may enhance facility output



#### Fast beams can become a valuable tool for ISOL R&D

starting at the NSCL and continuing at RIA



## Importance of Nuclear Physics in the r-process

In r-process model calculations shell structure affects the results.



## Need to determine experimentally:

- Are shells reduced far from stability?
- Are the astrophysical models wrong?
- What does the abundance distribution tell us about the site?



## **Energy Dependence of RI Production: RIA Example**

In-flight fission



The turn over point depends on the fragment separator acceptance.

A smaller acceptance fragment separator produces a later turnover.



Table 1 Comparative target power dissipation (taken from Ref. [13])

| Primary particle |                 |                                         | Target, bombarded by 1 particle μ A over 1 cm <sup>2</sup> |                                |                    |                                       |  |
|------------------|-----------------|-----------------------------------------|------------------------------------------------------------|--------------------------------|--------------------|---------------------------------------|--|
| Туре             | Energy<br>(MeV) | Energy loss<br>(MeV/g cm <sup>2</sup> ) | Element                                                    | Thickness (g/cm <sup>2</sup> ) | Total power<br>(W) | Power density<br>(W/cm <sup>3</sup> ) |  |
| n                | thermal         | 160/fission                             | <sup>235</sup> U                                           | 1                              | 160                | 32                                    |  |
| p                | 1000            | 1.2                                     | <sup>238</sup> U                                           | 110                            | 420                | 7                                     |  |
| p                | 30              | 16.7                                    | carbon                                                     | 0.9                            | 30                 | 75                                    |  |
| <sup>12</sup> C  | 1152            | 200                                     | tin                                                        | 4                              | 800                | 1200                                  |  |
| <sup>36</sup> Ar | 3456            | 2351                                    | carbon                                                     | 0.9                            | 2100               | 5250                                  |  |

J.R.J Bennet et al, NIM B126 (1997) 105

### **RIA Science Case**

- Nature of Nucleonic matter
- Origin of the Elements
- Tests of the Fundamental Symmetries of Nature
- Tests of the Fundamental Symmetries of Nature

