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The Advanced Fuel Cycle Initiative and GEN IV programs require 
a fast neutron spectrum facility for fuels and materials testing

• Advanced fuel concepts (e.g., nitride, metallic dispersion, 
fertile-free) are proposed for closing the nuclear fuel cycle, 
as well as for some GEN IV reactors

• Nearly all nuclear waste transmuter concepts, and most 
GEN IV reactor concepts, operate with a fast neutron 
spectrum

• Fuel cladding must be tested in prototypic radiation 
environments with appropriate coolants (e.g., Pb-Bi)



There is a clear need for a U.S. fast spectrum 
irradiation facility

• With the termination of the FFTF, there is no longer a 
domestic fast neutron spectrum irradiation facility

• There are a limited number of viable facilities abroad:
– PHENIX (France)
– JOYO (Japan)
– BOR-60 (Russia)

• Irradiation campaigns abroad are time-consuming and 
expensive
– Irradiation of eight 11-cm-high fuel pins in PHENIX by AFCI will 

take four years from initial discussions with CEA to the start of 
irradiation, with a cost for irradiation services of $5M



LANSCE is a cost-effective and logical choice for 
locating a fast-spectrum irradiation facility

• A new fast reactor would cost at least $800M
• LANSCE proton beam power is 800 kW (1 mA at 800 MeV)



Materials Test Station (MTS)
Functions and Requirements

• Intense fast neutron flux (up to 1015 n.cm–2.s–1) over a 1-liter 
volume with minimal proton flux contamination
– High burnup of fuel specimens (~6%/year)
– High damage rate of materials specimens (~7 dpa/year)

• Radiation damage environment similar to that encountered 
in a fast reactor
– He/dpa ratio near 0.5 appm/dpa

• High proton flux for spallation source materials testing
• Separate cooling loops for test specimens
• Capability of testing to failure

– Negligible reactivity from fuel specimens (deeply subcritical)



The Materials Test Station will be located in an 
existing experimental area



Experimental Area A in 1971

proton beam path



The A-1 target, shown here during construction in 
1973, is the proposed location for the MTS



The MTS 13-foot-diameter vacuum vessel would fit 
within the existing shielding



The MTS includes a neutron source, irradiation 
positions, shielding, and vacuum vessel
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The target and irradiation zones will 
sit on a stalk that is inserted into 
the vacuum vessel from above



A conceptual design of a flowing Pb-Bi target has 
been developed



A phased approach in spallation targets is 
proposed for achieving ever-greater neutron fluxes

• Heavy-water cooled clad tungsten target
– Extensive development within the Accelerator Production of 

Tritium program gives high confidence that this target will 
work reliably

• Flowing Pb-Bi target
– Moderate risk whose design will draw from lessons learned in 

the MEGAPIE project
• Heavy-watered cooled uranium target

– Testing of uranium alloys under proton irradiation is required 
to validate target lifetimes



The U-shaped target canister provides excellent  
target window cooling
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MTS takes advantage of the pulsed nature of the 
LANSCE beam to illuminate two spots on target

• Beam frequency is 120 Hz, 
pulse duration is 1 ms
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MTS takes advantage of the pulsed nature of the 
LANSCE beam to illuminate two spots on target

• Beam frequency is 120 Hz, 
pulse duration is 1 ms

• During a single 1-ms pulse, 
the beam is directed onto 
one spot on the target

• During the 8 ms the beam is 
off between pulses, a dipole 
magnet directs the beam to 
the alternate position on the 
target

• The next 1-ms pulse hits the 
other target position

• The beam is rastered
vertically at a high frequency 
(~1 kHz)



Spatial distribution of the proton flux for an 
LBE-cooled U-10Mo target
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Spatial distribution of the neutron flux for an
LBE-cooled U-10Mo target
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Spatial distribution of the power density for an
LBE-cooled U-10Mo target
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The flux spectrum the MTS with a D2O-cooled 
U target compares favorably with the FFTF
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FFTF 1.00×1015 0.51       .   
Upstream MTS    0.35×1015 1.7         .   

Downstream MTS    0.85×1015 3.8         .   



The MTS can be completed in 3 years at a cost of 
$20M

MTS Schedule and Cost

FY04       FY05       FY06       FY07       FY08
Installation/Commission

Operation/Testing

Costs (Operating Funds)
$5M        $8M         $7M         $3M         $3M



Breakdown of $20M Cost Estimate

Clean out A-1 & Swyd
16%

Area A Upgrades
3%

FMTS Buy & Install
27%

1st Stalk w/PbBi cooling
9%

ED&I
11%

Const Mgmt & Support
6%

Contingency
14%

Other (SafetyAnaly,Docs)
14%



MTS Status

• Pre-conceptual design completed in FY02.  No work 
performed in FY03.

• Safety authorization plan completed.
• MTS is within the existing Environmental Impact Statement.
• Total installation cost estimated at $20M, and can be 

completed in 3 years.
• Project will replace an experimental station that is no 

longer used. It will be installed with operating funds 
because we are replacing a test station within an existing 
experimental area.

• Seeking authorization from DOE-NE to start work in FY04.



Summary

• We need a domestic fast neutron source for materials and 
fuels irradiations. The alternative is expensive irradiations 
abroad.

• The MTS meets this need at a reasonable cost.
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