



## MUCOOL RF R&D Activities

### John Corlett

Accelerator and Fusion Research Division LBNL



#### **Cooling RF R&D - Staff**



#### **Berkeley**

John Corlett

Mike Green

Neal Hartman

Subal Kar

Mike Leung

Derun Li

Bob MacGill

 $\overline{IIT}$ 

Ed Black

#### Fermilab

Norbert Holtkamp

Tom Jurgens

Al Moretti

Zubao Qian

Vincent Wu

#### Mississippi

Don Summer

Mike Booke



#### Cooling RF R&D - Issues



- High accelerating field ( 15 30 MVm<sup>-1</sup>)
- Large beam pipe apertures ( 38 16 cm diameter)
- Strong magnetic field (5 T)
  - Maximize shunt impedance minimize power requirements
    - Novel accelerating structures
      - Closed-cells
        - » Windows or grids of tubes
- breakdown, multipacting, heating, dark current, ...



#### Cooling RF R&D



- 805 MHz
- Collider parameters
- "End" of cooling section
- Hardware
  - /2 interleaved cavity
    - Be windows
    - Low-power test cavity
      - LN<sub>2</sub> temperature
    - High-power test cavity
  - mode open cell cavity
    - Cold-test cavity
    - High-power test cavity
  - Superconducting solenoid
  - Lab G development

- 201.25 MHz RF cavity
  - Neutrino factory parameters
  - "Beginning" of cooling section
- Paper studies
  - /2 interleaved cavity
    - Be windows
    - Thin-walled tubes
  - Integration into cooling channel



# 805 MHz $\pi/2$ pillbox with Be windows







- Per-cell dissipated power 250 W
- Be window dissipated power 43 W

$$- E_0 = 30 \text{ MVm}^{-1}$$

- 3 filling
- 15 Hz

$$- Q = 21,000$$

» kHz cell-to-cell stability

$$- Z_o = 54 M m^{-1}$$

$$-ZT^2 = 44 M m^{-1}$$



### Low-power test cavity



- Test Be windows
  - Mechanical stability
    - » µm stability
    - RF heating
    - Halogen lamp heating
    - Low temperature
      - » Gain factor 2 in ZT<sup>2</sup>







# Low-power Test Cavity Measurements



- Low-temperature tests in vacuum
  - 500 W RF input
  - Halogen lamp heating
  - LN<sub>2</sub> cooling









# RF windows for 805 MHz cavities



- Be foils 0.005" thick
- 99.8% Be
- Foil diffusion bonded to Be frame
  - 0.063" thick rings
  - 6.3" internal diameter
  - 7.58" outside diameter
- Foil flatness 0.001"
- Pre-stressed
  - Different CTE alloys foil/frame

- Windows purchased for tests
  - Not "designed" in detail





## Window Measurements Halogen Lamp Heating



- Al and Be foils
  - Al not stressed
  - Heat with halogen lamp
    - Temperature profile broadly similar to RF heating









## Halogen Lamp Heating Room Temperature



- Al and Be foils
- Halogen lamp heating









## Halogen Lamp Heating Low Temperature



- Cool cavity with LN<sub>2</sub>
- Heating with halogen lamp
  - Window does not move
    - f due to cavity body T







## RF Heating Low Temperature







- Heating with RF
  - $-Q_1$  4000
    - Bolt-together cavity
  - RF on for 5 min cycles
  - Window does not move
    - f due to cavity body T

» "Null" measurement



#### **Be Window FEA**



- ANSYS model of Be and Al foil windows
- Include pre-stress of Be foil
  - Difficult to model accurately
- Room temperature foil distortion arises from temperature gradient in foil
  - Need increased conductivity
    - thicker foils
    - low temperature
  - Increase pre-stress?



Comparison of FEA vs. Measured Displacements for Varying Temperature Rises on the Alaminum Test Window





#### **Increased Be Window Thickness**









## **High-power Pillbox Cavity**







## 805 MHz 6-cell $\pi$ -mode Cavity







#### 805 MHz 6-cell $\pi$ -mode Cavity



- Al prototype tests
  - Determine final dimensions for Cu cavity
- Cu cavity machining has begun
  - 12 tuning points per cell







## П-Mode Frequency and Q Measurement







## П-Mode Input Impedance Measurement







#### П-Mode Field Measurement







### **Superconducting Magnet**



- Magnet produces up to 5T field on axis
  - Solenoid or bucking mode
  - models fields in solenoid channel

A Comparison of Measured and Calculated Induction Versus Distance While Operating in the Gradient Mode







# **Superconducting magnet**



BERKELEY LAS



#### Status of Lab G



- Modulator and klystron in place
- Water system installed up to cave
- Interlocks being assembled





- Superconducting magnet to be installed
- Shielding roof to be completed
- RF power waveguide to be installed





| Parameter                | Crossed Tube              | Pill Box                     |  |  |
|--------------------------|---------------------------|------------------------------|--|--|
|                          |                           |                              |  |  |
| Frequency                | 201.25 MHz                | 201.25 MHz                   |  |  |
| Accelerating Phase Angle | Sin(25 degrees)           |                              |  |  |
| Peak Accelerating Field  | 15.0 MV/m                 | 15 MV/m                      |  |  |
| Peak Surface Field       | 22.5 MV/m                 | 15 MV/m                      |  |  |
| Kilpatrick Limit         | 14.8 MV/m                 | 14.8 MV/m                    |  |  |
| Cavity Type              | Open Cell with crossed    | Beryllium foil windows over  |  |  |
|                          | tubes over aperture       | 15 cm radius apertures       |  |  |
| Cavity Dimensions        | internal r is 0.600 m     | internal radius is 0.600 m,  |  |  |
| •                        | internal cell length,     | internal cell length, /3, is |  |  |
|                          | /3, is 0.432 m.           | 0.432 m. length of accelera- |  |  |
|                          | ŕ                         | ting section is 0.864 m.     |  |  |
| Impedance                | 28.4 M /m                 | 34.1 M /m                    |  |  |
| Shunt Impedance          | 20.3 M /m                 | 23.3                         |  |  |
| Transit Time Factor T    | 0.845                     | 0.827                        |  |  |
| Peak Voltage per Cell    | 6.5 MV                    | 5.7 MV                       |  |  |
| Q                        | 47,500                    | 52,600                       |  |  |
| Fill Time                | 38 µs, critically coupled | 42 μs                        |  |  |
| rf Pulse                 | 114 µs                    | 125 μs                       |  |  |
| Peak Power per Cell      | 3.45 MW                   | 2.8 MW                       |  |  |
| Average Power per Cell   | 8.0 kW                    | 5.3 kW                       |  |  |
| Window Type              | 4 cm diameter Al          | 15 cm radius, 127 µm thick   |  |  |
|                          | crossed tubes             | Be foil                      |  |  |
| Average Power on Tubes   | 30 W (worst tube)         | 53 W (heated from both       |  |  |
|                          |                           | sides)                       |  |  |



## 201.25 MHz RF Layouts





## 201 MHz Gridded (Crossed-tube) Cavity







- Large apertures accommodated
- Air cooling inside tubes
- Coupling between cavities ~ 0.1%
- Cavities independently excited
- Tube walls can be thin < 0.1 mm
- Spun construction 1.27cm (0.5 in) wall thickness
- Tunable by wall displacement





#### **R&D Plans**



| Item                                                                 | Description                                                                                                                                     | Completion date             | M&S       | Labor (m-m) |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|-------------|
| Be window finite element<br>analysis                                 | Develop FEA model of Be foil<br>window, determine<br>engineering feasibility for<br>805 MHz and 201 MHz size<br>windows.                        | Jun-00                      | \$10,000  | 1           |
| Thin-walled tube analysis                                            | Develop engineering model<br>for thin-walled tube<br>structures                                                                                 | Jun-00                      |           | 1           |
| Low-power open-cell test cavity                                      | Complete measurements of<br>low-power open-cell test<br>cavity                                                                                  | Jun-00                      | \$1,000   | 1           |
| Install superconducting magnet in Lab G                              |                                                                                                                                                 | Jun-00                      | \$25,000  | 3           |
| Lab G 805 MHz RF                                                     | Complete installation and<br>commissioning of 805 MHz<br>RF system                                                                              | Jul-00                      | \$5,000   | 2           |
| Be window model                                                      | Design and build test<br>windows based on FEA<br>results                                                                                        | Sep-00                      | \$30,000  | 2           |
| Thin-walled tube test model                                          | Design and build test tube<br>assemblies                                                                                                        | Sep-00                      | \$30,000  | 2           |
| 805 Mhz open-cell high-<br>power cavity                              | Design and build a prototype<br>high-power open-cell cavity<br>at 805 MHz to test<br>behaviour in high RF fields.                               | Sep-00                      | \$100,000 | 3           |
| 805 MHz high-power<br>pillbox with Be end plates                     | Design and build a high-<br>power pillbox cavity at 805<br>MHz to test Be surfaces to<br>determine behaviour in high<br>RF and magnetic fields. | Oct-00                      | \$70,000  | 3           |
| Testing 805 MHz high-<br>power open cell cavity                      | Testing high-power open cell cavity at 805 MHz                                                                                                  | START<br>10/1/2000          | \$35,000  | 4           |
| Test Be window(s)                                                    | Test window(s)                                                                                                                                  | Nov-00                      | \$1,000   | 1           |
| Test thin-walled tube<br>assemblies                                  | Testtube assemblies                                                                                                                             | Nov-00                      | \$1,000   | 1           |
| Testing 805 MHz pillbox<br>high-power cavity with Be<br>end plates   | Testing high-power pillbox<br>cavity at 805 MHz to test Be<br>surfaces                                                                          | START 1/1/2001              | \$35,000  | 4           |
| Modifications and further<br>high-power cavity testing<br>at 805 MHz | Unforseen challenges,<br>changing geometries, surface<br>coatings, etc                                                                          | CONTINUES<br>through Sep-01 | \$100,000 | 8           |
|                                                                      |                                                                                                                                                 | Total (805 MHz):            | \$443,000 | 36          |

Total (805 MHz): \$443,000 36

| Item                                           | Description                                                                                                                                                                            | Completion date | M&S                                             | Labor (m-m) |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------|-------------|
| Preparation for 201 MHz<br>equipment in Lab G. | Purchase and install 201 MHz<br>tetrode and power supplies<br>into Lab G. Coaxial lines,<br>interlocks, etc. Prepare for<br>superconducting solenoid.                                  | Feb-01          | \$400,000                                       | 12          |
| Prototype high-power 201<br>MHz cavity         | Design and build a prototype<br>high-power cavity at 201<br>MHz to test behaviour in high<br>RF fields and magnetic fields.<br>Use Lab G facilities with 200<br>MHz tetrode installed. | May-01          | \$360,000                                       | 12          |
| 201 MHz cavity testing                         | Testing high-power cavity at<br>200 MHz. Conditioning,<br>operating at high-power<br>varying pulse length, varying<br>magnetic field                                                   | Oct-01          | (costs<br>included in<br>lab G.<br>preparation) | 4           |
| Modifications to cavity                        | Based on experimental<br>experience, modify cavity -<br>e.g. anti-multipactor<br>coatings? Change geometry<br>of power feedthrough?<br>Improve cooling in some<br>areas?               | Feb-02          | \$120,000                                       | 4           |
| 201 MHz cavity testing                         | Additional testing of high-<br>power test cavity                                                                                                                                       | May-02          | \$30,000                                        | 3           |
| Second high-power RF<br>cavity                 | Develop second iteration of<br>cavity design based on<br>experience with first<br>prototype and it's<br>modifications. Manufacture<br>second cavity.                                   | Jan-03          | \$300,000                                       | 7           |
| 201 MHz cavity testing                         | Testing second high-power test cavity                                                                                                                                                  | Mar-03          | \$30,000                                        | 3           |
|                                                |                                                                                                                                                                                        | Total (201MHz): | \$1.240.000                                     | 45          |

Total (201MHz): \$1,240,000

BERKELEY LAB



#### Summary



#### • 805 MHz

- Be windows studies continuing
  - Low power test cavity measurements ( /2 interleaved pillbox)
  - ANYSYS FEA model
  - Designing high-power test cavity
- -mode 6-cell open-cell cavity
  - Al model testing complete
  - High-power Cu cavity being built
- Lab G preparations complete this summer
  - » High power tests in Lab G this year

#### • 201 MHz

- Designing high-power test cavity
  - » Build high-power test cavity next year
  - » Develop 201 MHz RF test stand in Lab G