

Neutrino Factory and Muon Collider Collaboration

R&D Program

Michael S. Zisman CENTER FOR BEAM PHYSICS

NUFACT00 Workshop–Monterey May 17, 2000

- Introduction
- R&D goals
- R&D activities under way
- R&D plans
- R&D budget
- Summary

- Muon beam R&D activities in the U.S. carried out under the auspices of Neutrino Factory and Muon Collider Collaboration (*MC*)
 - broad international community involvement (National Labs, Universities, non-U.S. institutions)
 - reflected in membership of Executive and Technical Boards that guide the R&D program
 - these presently include members from CERN and BINP
 - anticipate expansion of European representatives and addition of representatives from Japan in near future
- *MC* has grown to 137 members (+37 in past 6 months)
 - committed to encouraging international cooperation and coordination for Neutrino Factory and Muon Collider R&D
 - this workshop is excellent means to foster such working relationships
 - hope to strengthen R&D ties between the various groups and minimize duplication of effort

Introduction

- Since last year, MC effort has focused primarily on Neutrino Factory R&D topics
 - Muon Collider issues have not been (and should not be) forgotten
 - emittance exchange workshop scheduled at BNL in September
 - contacts here are Rick Fernow (BNL) and Gail Hanson (IU) [talk Wednesday morning in WG-4]
- Change in R&D emphasis not without penalty
 - initial development based on 805-MHz components
 - now developing components sized for initial cooling channel parameters
 - 201 MHz RF cavity, large-bore solenoid, large aperture LH₂ absorber

R&D Goals

- Define where we want to be 5 years from now in all R&D areas, then work backward to see what's needed to get there (funding and effort)
- At the end of 5 years (science/technology-driven schedule)
 - all optics designs completed and self-consistent
 - validation experiments completed or well along
 - know what we want to build
 - know how to build "hard parts" (prototypes completed or designed)
 - ready to design and cost most components (\Rightarrow ready to begin CDR)
- Aim for "ZDR-level" understanding of a Neutrino Factory in \approx 3–4 years
- If aim to begin CDR at the end of R&D work, it should take \approx 2 years
 - implies "prying loose" significant engineering support early
- This is aggressive schedule and requires an augmented funding level

- R&D activities fall into four main categories
 - simulations and theory (Organizer: Jonathan Wurtele, UCB/LBNL)
 - targetry experiment (E951 at BNL) to demonstrate technical feasibility of key concepts (Organizer: Kirk McDonald, Princeton U.)
 - MUCOOL to demonstrate feasibility of required components and study cooling effects (Organizer: Steve Geer, Fermilab)
 - component development, e.g.,
 - 201-MHz SCRF cavities for acceleration section (Cornell)
 - induction linac with internal SC solenoid for phase rotation (LBNL)
 - low-frequency, high-gradient proton driver cavity (Fermilab, BNL)
 - 20 T SC solenoid system (NHMFL)
 - muon beam diagnostics (UCLA, U-Mississippi)
- Significant effort also invested in Feasibility Study activities, drawing other groups into the R&D program

- Targetry goals
 - demonstrate performance of 1-MW target in high-field solenoid
 - measure pion and neutron yields to benchmark code
 - demonstrate lifetime of target (Hg jet and solid)
- R&D activities
 - complete A3 beam line at BNL
 - thermal calculations to assess mechanical behavior of target
 - component development for experiment [20-T pulsed solenoid, 70 MHz high-gradient RF cavity]
 - prepare for initial solid-target beam test
 - prepare test of Hg-jet in high magnetic field at NHMFL

• Targetry experimental setup (BNL)

- MUCOOL goals (5-year)
 - build component prototypes and bench test complete cooling cell
 - test cooling channel components in a muon beam...somewhere
 - assume initial portion of channel (\Rightarrow 201 MHz cavities, big solenoid)

- MUCOOL activities
 - 805 MHz RF
 - fabricate high-power open cell cavity (high-gradient performance) [A. Moretti]
 - fabricate high-power pillbox cavity (multipactor; Be performance)
 [J. Corlett]
 - test Be window deformation [D. Li]
 - solenoid for testing cavities [M. A. Green]

— frequency shift vs. temperature rise for AI and Be windows

• Be (pre-stressed) shows improved performance

- solenoid for cavity tests has been completed
 - test solenoid has two independent coils
 - operates in "solenoid" or "gradient" mode (5 T peak field)
 - meets design specifications
 - shipped to FNAL to be installed in Lab G test area

— 201 MHz RF

- design high-power cavity suitable for cooling channel [T. Juergens]
 - Be windows and gridded cell being studied

— design prototype LH₂ absorber [D. Kaplan]

— example of cooling cell [E. Black]

- Simulation goals
 - complete end-to-end simulations, including effects of errors
 - Target/Capture, Front End, Acceleration, Storage Ring
 - develop concept for emittance exchange (longitudinal \pm transverse)
- Simulation/theory activities
 - completed front-end solution with/without initial phase rotation
 - still to be optimized in terms of performance
 - study front-end error sensitivities
 - have emittance exchange workshop
 - work on acceleration system and storage ring designs

• Simulation beginning from induction linac (175 MHz RF) [C. Kim]

Population within Phase Space Cuts

Lattice Properties:				
Peak Field on Axis	3.4 T			
Peak Field at Coils	12 T			
Current Density	132 A/mm2			
LH length	12.6 cm> 13.2 cm			
LH radius	15 cm> 10 cm			
AI wall thickness	400 μ> 200 μ			
Be window thickness	125 µ			
Be window radius	19 cm			
RF	175 MHz, 14 MV/m			
total transmission, 0.03 mu/p at 2100 mm mrad				
within 6000 mm mrad cut, 0.014 mu/p				
momentum cut, 0.15 < Pz < 0.25 GeV/c				

- Component development goals
 - demonstrate high-gradient 201 MHz SCRF cavity (acceleration)
 - demonstrate induction linac cell with internal SC solenoid operating at 2 MV/m (phase rotation)
 - demonstrate realistic pulser system to drive it
 - demonstrate high-gradient, low frequency RF cavity for proton driver
 - identify and demonstrate other critical technologies
- Component development activities
 - design and test 201-MHz SCRF cavities (work at Cornell supported by NSF)
 - expand cleaning and processing facilities
 - order first test cavity
 - develop test cavity and inductive inserts for proton driver

- Simulations
 - Feasibility Study cooling channel performance unexpectedly poor
 - believed related to poorly optimized upstream beamline (too much energy spread) so upstream front end must be reexamined
 - must understand this to demonstrate better cooling performance
 - error sensitivity of cooling channel must be understood
 - solenoid strength and multipole errors; RF cavity V, φ and HOMs; absorber variations; energy straggling, multiple scattering tails,...
 - only from these studies can we define
 - component specifications to compare with what we build
 - diagnostics that can measure what we need to control
 - the need for, and plans for, experimental tests of key issues

R&D Plans

- Targetry
 - solid-target effort will be augmented
 - first beam tests will take place at BNL A3 line
 - work on target solenoid will proceed
- MUCOOL
 - shift focus to 201-MHz development starting next year
 - cavity design is under way (delivery and testing will take 2–3 years)
 - solenoid to test cavity must also be designed and fabricated
 - Feasibility Study showed that these magnets are not easy
 - explore idea of initial testing with scale-model magnets
 - like NASA ("faster, cheaper, almost as good")
 - definition of demonstration awaits guidance from simulation effort

- Component development
 - induction linac prototype will be developed
 - verify gradient performance, pulser design with reset feature, effect of internal SC solenoid
 - begin with engineering study, then fabricate prototype cell
 - alternative CERN approach using RF cavities will be watched carefully

- diagnostics
 - begin consideration of "operational" diagnostics
 - what is needed to transport beam, characterize beam, maintain beam properties during storage
- feasibility study
 - BNL has requested MC participation in study of "high-end" Neutrino Factory design
 - estimate performance and identify R&D needs and cost drivers, building upon previous Fermilab study
- Proton driver
 - develop and test high-gradient pulsed RF cavity
 - demonstrate intense, short proton bunches (\approx 1 ns)

- Work reported here is not free
- Funding has been increasing each year
 - MC funds are "leveraged" since the sponsoring Labs cover physics staff costs
 - more like "European" accounting

Year	DOE (\$M)	NSF (\$M)	TOTAL (\$M)
FY99	2.2		2.2
FY00	4.7	<mark>1.2</mark>	5.9

- additional funds contributed by Fermilab and BNL in support of feasibility study activities
- We hope for more support in FY01

<u>Summary</u>

- MC R&D program is vigorous and healthy
 - clear directions to proceed on all hardware fronts
 - clear challenges identified for simulation group
- We will continue to coordinate closely with European and Japanese colleagues to maximize R&D output and minimize duplication
 - a shared muon beamline would be a valuable resource
- MC membership and funding have both grown at a healthy rate in the past few years
 - involvement of NSF institutions and groups strengthens the effort
 - involvement of international institutions and groups would strengthen the muon-beam R&D effort even more
- We look forward to these positive trends continuing