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e Physics Issues

— Concentrate on rare processes — intense particle beams required
— Limit this to measurements in which progress is expected

— Experiments that proton driver for y collider might benefit
e Studies of quark mixing matrix using kaons

e Muon and electron number violation
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e Standard Model rate small — no tree level FCNC = decays
proceed through box and penguin diagrams.

_ \\Y N
S K
q v zero with degenerate m,
d a t quark dominates
\\%
e Study of SM quark mixing matrix
Ve Vus Vap 1- /\2/2 A A/\s(p —in)
Vea Ves Vi - 1—)\2%/2 A)?
Via Vis Vo AN(1-p—in —AN 1

e All unitarity triangles have the same area:

VUdV:!lb + VCdV:b + thV:b = 0 B ;’]'i_;‘,';j{‘_:.’-?‘«.
VuaVie + VeaVi + VeV, =0 I triangle

Jarlskog invariant J = A\(1 — \?/2) x A%2)\% (2 x area)
AZAS(1 - p), A2y

et v

[0,0] (A —X%/2,0]
Kaon experiments measure i / Jarlskog invariant:
Experiment Measured Quantity
K}, — utu” [Re(ViaVi)| [A%X5(1 - p)
K? — 0w Im(ViaVE)| |A%N%n)
K" = ntvp 'Via Vil |AZ)\5(1 — p —in)|

e Goal of experiments is precise determination of SM parameters
and search for deviations that would indicate new physics
— Lack of closure of triangle — matrix not unitary
— Difference in J measured in B and K systems
— Theoretical uncertainties at the level of a few percent
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Implications of ¢'/¢ for Rare Decays of Kaons
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Recent work on effective Zg4s couplings

® Motivated in part by E787 observation of one K+ — 77UV event
at ~ 5 (2) x SM rate and by large ¢ /€ value

® Zps couplings would affect both K — 71l and ¢’ /€

e Arise naturally in supersymmetry from penguin diagrams

Constraints on B(K} — n%7%) from ¢ /e (Bosch, Buras, et al.)

® SM: 1.6 x 107! < B(K? — 7%7) < 3.9 x 10-11
® /e <28 x107* = B(KY{ — n%7) < 48 x 10~
® Room for new physics above (or below) SM rate

Constraints on B(K* — r*v7) from €/e and B(K{ — ptu~)
(Buras and Silverstrini)

® SM value: B(K* — 7tup) = 8.2 x 10-11
o f’/f < 28 X 10.‘-4 + B(Kg — ’_L ﬂ_) = B(K+ — 7T+VT/-) < 29 X 10—-1]_

e Room for new physics above SM rate
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Challenges in K — (7)1l Experiments

K? — utpu~ — lots of data, hard to interpret

— Short distance rate oc (1 — p)?
— Rate dominated by long distance physics

— Deduce ReA by subtracting absorptive contribution
from measured rate

— Get Agp from ReA - ReA,+, (from measurements
of radiative decays + theory)

K™ = ntuv — easy to interpret, low statistics data
— Decay rate «< |(1 — p — in)|?
— Standard model rate ~ 8 x 1071

— Backgrounds from Kt — 7t7% and K+ — utv

K¢ — 7%% — easy to interpret, very difficult experiment
— Decay rate < 7?

— Standard model rate ~ 3 x 10711

— Significant backgrounds from K — 7%7°

— Very few experimental constraints
K — n%*e” — low rate, significant background

— Direct CP violating term « 7? with v or Z° exchange
— CP conserving term from 2+ intermediate state

— Indirect CP violating term from K; — K, mixing

— Standard model rate ~ 10~}

— Many backgrounds — K — veTe~ with radiative v
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BNL E787 K* — n"vv Experiment

Alberta, BNL, KEK, Osaka, Princeton, TRIUMF

BK™ — n"vp) = |V}4Vys| with small theoretical uncertainty:

Arbitrary Units

B(K" = 7%vp) = 4.11 x 1071 x A% x X(x) % [(po — )2 + 1]

X(x¢) known function of m?/m3%;, po ~ 1.4 due to charm

.l .
100 150 200 250 300
Momentum (MeV/c)

Backgrounds from:
pt from K+ —= ptv
7t from K+ — 770
= Particle identification:
K" — 7" - u* — et decays
= Kinematic analysis:
Measure E,p,R of
= Veto events with extra ~:
Pb-scintillator and
CsI hermetic veto
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BNL E787 Measurement of B(K™ — nTuvw)
\ ,

1995-97 Data K™ — 77vv Monte Carlo
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B(K* = ntvw) = 1.5734x10710 [SM ~ 0.82 x 1071

e Consistent with SM value



K —a vy s E949 & CKM

.. the two experiments are sagex of a program for studying K+ —ntu¥ , which will eventually reach a
sensitivity comparable to the theoretical accunacy at which thiz process can be calculated in the Standard
Model. Stage one would be E949, which secks to reach a sensitivity of ~ 107! /event and stage two would
be CKM, which seeks to reach a sensitivily an order of magnitude beyond this level

e Collaboration begun in sumnmer of 1999

o E949 approved 8/99

o plans for integration of FNAL TDC'’s into E949 underway (2/00)
e system tests planned for 9/00

e BNL represented at CKM collaboration meeting 9/99

e BNL active in biweekly CKM video meetings

# BNL contribution to PV systern under development

e E949
— FNAL TDC’s to instrument the range stack
— manpower/expertise

e CKM

— BNL is collaberating on the Photon Veto
— manpower/expertise

FE rorrian — | —
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e949proposal

BNL E949 — Improved Measurement of B(K™ — 7" vw)

Alberta, BNL, Fermilab, Fukui, IHEP Moscow
INR Moscow, KEK, Kyoto, UNM, Osaka, TRIUMF

Expected sensitivity, scaled wrt E787 1995 data:

E787 events at SM rate (0.82 x 10719) 0.20
Lower K* momentum x1.38
Improved duty factor x1.56
Trigger + other improvements x1.54
Additional detector improvements x2.10
Optimized high-rate analysis x2.0
Running time (6000 hours — 60 weeks) x3.6
Total above K* — 7t7? peak at SM 5—10.0 events
Analyse below K+ — 7t7% peak x2.0
Best possible sensitivity at SM 10 — 20 events
mostly already obtained
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CKM at Fermilab — Measurement of B(K™ — n7vv)

BNL, Fermilab, Serpukhov, San Luis Potosi, Michigan, Texas, Virginia
New technique — decay in flight in separated 12 GeV K* beam

e Momentum analyse K* and n*
e Identify K* and n* with ring imaging Cherenkov
e Veto photons with hermetic detector

Give up some constraints:

e Don’t detect # — i — e decay chain
e Must measure initial state kinematics
e Lose energy and range measurement of =

Gain some advantages:

e Photons from K™ — 7*7? decay are higher energy
e Much shorter detection time — 300 ns vs. 10 us
e Identify 7* with RICH
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86.4 m

<— |nitial momentum-selected
beam AP/P ~ 2%

RF deflection: Asin(wt)
A~ 15 MeV/c

«— Transport L = (integer)g.c/f

At then integer multiple of 2xw for

» 2nd RF detflection e.g. 180° out
/ of phase:  -Asin(wt+wAt)

For *, no net deflection
For K+, deflection is

“ 129 m )l(

2A sin(ngc/2f) o
cos(wt+ ngc/2f)

’g‘
i

Stop n+ with beam plug, collect K*



eckmsensitivity

Expected P

D
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erformance of CKM at Fermilab

Designed to reach a sensitivity of ~ 10712

Beam intensity 30 MHz
Decay probability ~ 16%
Detection efficiency | ~ 0.7%
Running time 2 x 107s

Backgrounds simulated:

V)

n
LUV UEY

10°

[ Effective BR
Background source (x10712%)
KT — oyt | <0.04
Kt — 770 ' 3.7
Kt — putus . <0.09
» KX, Ky »7fe™v | <0.104
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N
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et

"A — 77X in residual gas < 2.1
Accidentals | 0.51

CKM Experiment Sensitivity and Backgrounds
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Fermilab KTeV E799 Search for K{ — #°II

) Muon  Muon
Analysis Magnet  Filter . Counters
Photon Veto Detectors ——
Il ™o Csk.
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|; |/ || f. 1 1 ------ I
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. 1
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N Trigger
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Hadron Veto
with Lead Wall
] | 1 i | 1 | 1 1 1 | >~
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Distance from Target (m)

Arizona, Chicago, Colorado, Elmhurst, Fermilab, Osaka,
Rice, Rutgers, UCLA, UCSD, Virginia, Wisconsin

Detector and beam highlights

® Pure Csl calorimeter:

Og/E =1% at 10 GeV
7 /e rejection > 700

e Transition radiation
detectors:
7 /e rejection > 200

e Clean, intense beam:
~ 108 per second

Preliminary results
from 1996 run shown
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Fermilab KTeV E799 Search for K¢ — 70w

B(K? — 7%7) = Im(V}4Vis) with small theoretical uncertainty

For 7 — v+ decays, current detectors measure ~ position and E

e K? decay point inferred by constraining M., to M,

e Copious background from K9 — 7070

e Rely on 7 veto, and cut on pr of 7° to reject background

® Requires at least nearly hermetic v veto with high efficiency

New result uses 7 — vete™ to determine K{ decay point

—
—
— —
.
—
—
—

_—

Vertex frome e

e Insufficient sensitivity to get near Standard Model level
e Allows study of backgrounds other than B(KY — 7%7)

— A > n7n°
- = A70
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New Limit on B(K{ — 7%7) from Fermilab KTeV E799
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e Background from hyperon decays at low pr

e Background from B(K{ — 7°7°) suppressed
B(K? - 7%1) < 5.9 x 1077 [SM ~ 3 x 10 !]

One day test of K¢ — 7%w, 7% — v+ done:

e Limit set based on one event consistent with background

B(KY - 7%7) < 1.6 x 107°
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Fermilab KAMI Experiment to Search for K — 7%w

Arizona, Campinas, Chicago, Colorado, Elmhurst
Fermilab, Osaka, Virginia, Wisconsin

KAMI builds on KTeV detector and experience:

e Superb CsI photon detector

e Long experience in doing experiments with K; beams

Will use new beam derived from Main Injector:

e 120 GeV beam, debunched, 3 x 10!3 protons per pulse
e Transport modified to yield appropriate targeting angle
e Possibility of moving target downstream to increase intensity

Efficient v veto and kinematics to reject background

e Hermetic photon veto system, including in the neutral beam

e Energy and position of 2 v from 7% decay measured with high precision

e Infer decay location by constraining 2y mass to 7° mass

¢ Require pr > 215 MeV/c to eliminate 27° induced background

2m Magnet Vacuum

Window

Hadron Anti
Fiber Tracker Csl
Mask Anti Vacuum Veto \ -[
1m
Q Charged

. \ NN g eesore

‘ I
Om -

4

Muon Range
Stack

I m
Beam Hole
L] Veto

. sl Anti

| |

145 m 155m 165 m 175 m 185 m 195 m 205 m




kamiperformance

Expected Performance of KAMI Search for K¢ — 7%»
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Advantages of this technique

® Relatively lower neutron flux and lower solid angle beam
® Higher acceptance, no losses from v direction measurement
e Extremely good energy resolution from (existing) CsI calorimeter

® Better v veto by virtue of higher v energy

2 Csl 2 Pb/scint.

10 3 pr—rrrrre ey 10 e

< Tests of v veto
at INS in Tokyo

1 MeV 3

Performance better than
EOI assumption

Additional tests of
beam hole veto being analysed

Measurements of neutron flux
in 150 GeV beam being analysed

v inefficiency vs. 7 energy

Disadvantages of this technique:

® Few kinematic constraints — K energy not measured, no v direction
e Potential for background from 7 produced by energetic neutrons

e Potential for background from hyperons

3 x 10" protons/pulse = 15-30 events per year with S:N ~ 10:1
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BNL E926 Experiment to Search for K — 70w

UBC, BNL, Cincinnati, Kyoto, INR Moscow, New Mexico,
TIJNAF, TRIUMF, Virginia Tech, Yale, Zurich

E926 uses novel technique — = allows full kinematic analysis of event

e Determine Ky, energy by time of flight, determine decay point
and 7° momentum by measuring v energy and direction

Requires microbunched proton beam from AGS

e Unbunched beam extracted between two unfilled RF buckets,
bunch spacing determined by RF frequency — 20 MHz

e Bunch width determined by dynamics of extraction —
orMs = 280 ps achieved at low intensity in early tests, 150 ps required

Produce low energy beam to allow TOF

e Produce beam at large angle (45°) — low momentum (~ 600 MeV /c) K{
e Run AGS with large duty factor — 10'* ppp, 5 s cycle time
e Adjust intensity to maximize events with one K decay per micropulse

Fully measure decay kinematics and reject extra v

e v veto performance based on E787 — ~ 107% inefficiency for E, > 20 MeV
e Deduce E(K{) by TOF — 250 ps 7 timing, 150 ps beam timing
e K{ vertex by v direction — ~ 35 mrad for 200 MeV ~

ES®S268 EXPERIMENTAL APPARATUS
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Expected Performance of BNL E926 Search for K¢ — 70w

Advantages of this technique:

e No background from hyperons, reduced 7° production by neutrons

e Accelerator is available at low incremental cost

¢ Kinematics improves suppression of dominant background (Kj, — 7%79)
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Disadvantages of this technique:

e Requires vetoing relatively lower energy photons

e Low veto threshholds susceptible to high accidental veto rates

e Low energy secondaries implies complicated trajectories —
backward going particles and long event durations

e Low energy neutron fluxes in beam are very high — few R GHz
Performance calculated based on 9000 hour run:

S/N

Signal events

B(K{ — 7% 7) Precision

1

2
3
5

94
65
48
32

0.15
0.15
0.17
0.20
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Search for Lepton Flavor Violation

Experimental evidence shows there are nearly conserved
additive quantum numbers associated with each family
of leptons — nonconservation referred to as LFV.

e These conservation laws are accidental —
no known gauge symmetry protects lepton flavor.

e Rigorously true in the SM if G=1e v, u d

neutrinos are mass degenerate. |G=2 u v, ¢ s
G=3 17 v t b

e LFV in extended Standard Model can occur through

v oscillation in loop diagrams.

® Information on neutrino mass and mixing =
rate for LFV in charged sector is below
any conceivable experiment’s sensitivity.

e Essentially all extensions to the SM allow LFV.

= LFV in charged sector would be unambiguous
evidence for physics beyond the Standard Model

® The mass scale probed is very high:

A‘ud ™ — T — \
" ! 9 Ry =it =101 =
¥ ML = 3000(\,a)eq)'/? TeV /c?
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LFV Searched for in Many Processes

AG = 0(2) processes:

M or AM Limit

5 ut BNL E871
>X< B(KY - p*e’) <4.7x 10712 150 TeV/c?
d AV or PS
" BNL E865
. B(K* —» mtute™) < 4.0 x 1011
3 XE g V(OI' S H ) 31 ’I‘e.\[/c2
) ! BNL E865 —< 10~!
W | Fermilab E799
) XK?- B(K? — r0u*e¥) < 3.2 x 10-10 |37 TeV/c?
 — VorS
AG = *£1 processes:
<. |B(r—oeee)<1.0x1072 |86 TeV/c?
X e
li+ i e+
MEGA
X Byt > ety) <1.2x 1071 )
p* //\"Kxg Background limited 21 TeV/c
¥ | PSI experiment — 1014
PSI SINDRUM?2
p- e 21((” _i__ii A‘L})) <6.1x10°13
X & 365 TeV/c?
u,d ud | SINDRUM2 — 4 x 10714
MECO at BNL — 5 x 10717
AG = %2 processes:
>g:‘"‘x“‘g<_ AMgk < 3.5 x 107'2 MeV/c? | 400 TeV/c?
d d
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History of LFV Search Limits
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Examples of Muon Conversion Mechanisms

e Supersymmetry: Parameter value for R . = 10~16
%0
w— "g (. predicitions at 1071 level
q q

N
p @ ; U Ua|? = 8 x 10713
q q
e Leptoquarks:
w d
] Mg = 3000 (AuaAeq)'/? TeV/c?
d e

e Compositeness:

w e
>< Ac = 3000 TeV

—4
: : gHMe =10 X gHu#

e Heavy Z’, anomalous Z coupling:
v ¢ My = 3000 TeV /c?
12,2 B(Z — ue) < 10717

After W. Marciano
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LFV in Supersymmetric Grand Unified Theories

=21

e Observation of Hall and Barbieri —
large t-quark Yukawa couplings = observable levels
of LFV in supersymmetric grand unified theories

e Degree of LFV in supersymmetric sector

related to quark mixing

e Interfering diagrams calculated by Hisano, et al.

Process Current limit SUSY level |
p N — e N 1012 107
pt— ety 101 10713 |
T — Uy 10°° 107°
T T T T T T T T T ](j“ T T T T T T T T T
i Experimental bound L Experimental bound
i 1107 T
tan =30
10-:5 ——__ﬁ_ ‘\“\__\ /_/[a:;;;;
:‘ __‘\-\‘\‘ X \ ,”——— .......... 3
™~ N T tan =3
_Q L. \/ \\\ — 10—17 - .\‘ “//f' i
MECO sensitivity (1 event) ™\ A
" tanf=10 N Vo ]
i Vo
/ I
\\ |'r 19 \fl I|I
[ W v 1

10
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mg, (GeV)
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Mg (GeV)
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LFV in Supersymmetric Grand Unified Theories

Many recent papers on unified supersymmetric models —
an example is Hisano and Nomura, Phys. Rev. D59

Features of the model:
e SU(5) grand unified model

e Heavy right handed neutrinos

= Solar neutrino results related to LFV

Am?(eV?)

sin?20 My,, (GeV)
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Principles of 47 — ety Search

Stop 1t in thin target, detect e™ and v

-+
€

( w' p, =52.83 MeV/c

p,= 52.83 MeV/c
y A®_ = 180°
L‘ktw =0ns

e Background from radiative decay:
pt — e,y suppressed by kinematics
e Accidental background from two decays:
—ut = e
E.+ peaked near m,/2, flat energy dependance
—ut = eTU ey
for y = 2E,/m,, in interval iy near y =1
dN, = £6y?*(In(dy) + 7.33)

= Background/Signal «
AE, x (AE,)? X Ate, X (Afe,)* X Rate



megal

e Experiment done at LAMPF — 800 MeV linac, 1 mA

The MEGA Search for pu*

ELECTRON SCINTILLATORS

ELECTRON CHAMBERS

wmolzon

~ Duty factor 6-7% — instantaneous p* stop rate 250 MHz

e E.+ and E, measured with magnetic spectrometer

— 1.5 T magnetic field

— Electron spectrometer — low mass MWPC

— Photons converted and ete™

PHOTON AR‘vI EVENT
\ !
| .

"?“fﬁ E

i
SR G5
R S B
t
|-

— FOL === =DELAY READ OUT = LEAD

Events

60
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40
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10
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35 40 45 50 S5 60 65 70
Photon Energy (MeV)
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The MEGA Search for um — e

e 1.2 x 10" 4" stopped during 1993-5

® 0.43% ;™ — ety detection efficiency

e Require E. > 50 MeV, E, > 46 MeV, At < 4 ns, Oey > 175°
¢ Hand scanning of events to eliminate some backgrounds

® ~ 2900 events remain following event selection
— maximum likelihood analysis used
to separate signal and background

N (accidental)

2870

Nyt — etv,vey)

30 + 8(stat) + 15(syst)

N(u* — e™y) < 5.1 [90% CL]

B(p™ —e*y) < 1.2 x 107! [90% CL]
MEGA limited by accidental backgrounds
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The PSI Search for u™ — ety
Novosibirsk, Tokyo, KEK, Nagoya, Waseda

Liq. Xe Scintillation
Detector
l

‘. 2 ,‘
N i
o i
L ;

] Thin Superconducting Coil
Muon Beam [ —— Stopping Target

Drlft Chamber \ : £ Tiewing Counter

Lig. Xe Scintillation
Detector

Drift Chamber

Experiment done at PSI — 1.5 mA 590 MeV proton cyclotron "
e 51 MHz pulsed beam — 100% macro duty factor
e E.+ measured with magnetic spectrometer

e E, measured with liquid xenon scintillator

graded field =
radius independent of emission angle
no trajectories with many loops

/=
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Expected Performance of PSI " — ety Search

Simulation of acceptance and background done
with conservative but Gaussian error distributions

Running time 2.2 x107 s
pt stop rate 102 Hz
Q/4An 0.09
e’ efficiency 0.95
~ efficiency 0.70
cut efficiency 0.80

FWHM
AE, 0.7 %
AE, 1.42.0 %
Abe, 12-14 mrad
Ate, - 0.15ns

= 1 event for B(uy* — e™y) = 0.94 x 10714

>‘ T T T T T T T T T T T T T T T T T T T | T ¥ T T T

1.02 - 10" 1 Decays in Acceptance 7]

098 - . . _

[
T 1: T T T

0.9 A R R T O

0.9 0.92 0.94 0.96 0.98 1 1.02

= expected background = 0.5 events
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Coherent ;= to e~ Conversion: =N — e™ N

e /.~ are brought to rest in a thin target
where they form muonic atoms in 1S state.

e Three things may happen to the y~:
Nuclear capture p N — y,N’

Decay in orbit "N — v,e 7N
Conversion to e~ "N — e™N

R — I‘(/J,_N“‘“‘}e_N)
He = T'(p~N—vy,N/)
e This process is coherent if the nucleus left in its
ground state.
— There is an extra factor of Z in the rate.
— Coherence is reflected in the elastic form factor —
it is large at 105 MeV /c momentum transfer.

e Detecting this process is in principle easy.

— The signature is simple — a 105 MeV electron.

— The final state is one particle; hence there is
no accidental coincidence background at high rates.

— Other sources of 105 MeV electrons are heavily
suppressed.

— Balance higher sensitivity for large N
with less experimental difficulties for small N.
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Search for 4,"N — e~N with SINDRUM?2 at PSI

® 11~ beam derived from 1.5 mA, 590 MeV cyclotron
(10'® protons per second at 1.2 GeV/c)

® Muon beam is a mixed 85 MeV /c m, i, e beam
with total flux >~ 107 s~

e Data taking complete for first phase

Rje < 6.1 x10°13

A Collimator
B Moderator
C Beam Counter
D Pion Stopper
E Target
F Inner Hodoscope
G Cerenkov hodoscope
H Outer Hodoscope
I Inner Drift Chamber

["3 Outer Drift Chamber

K Superconducting Coil
L Helium Bath

M Service Tower

N Magnet Yoke

O 5x End Ring

P Light Guides

Q Photomultipliers

100 MeVic e
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Search for 1 N — e~ N with SINDRUM?2|

e Background from “prompt” , u,e processes
eliminated with veto counter in beam

e Cosmic ray induced background eliminated
by detecting through-going muon in detector

e Electron energy resolution of FWHM ~2.5 MeV,

molzon

limited by energy loss straggling and spectrometer resolution

u Tioe Ti
full 1993 sample

mm all e from target

103 B COSMix suppressed

N 1
o E
&2 :
5 -
0% =
mt
B
_1,‘-
i
10 —=
+
1
:‘(TT I'TT T II - {

o

total e energy in (MeV)

Currently running with new beam at higher intensity:

+ u—e conversion at

B.R.=4x10™"?

5 90 95 100 105 110

e “Beam blocker” to remove 7~ in beam

e Momentum reduced (no p~ decay in flight background

e Remove beam anti-counter, increase rate

= Sensitivity of 1 event for R e =~ 4 X 10-14
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BNL MECO Search for 41N — e™N
Boston, BNL, UCI, Houston, INR Moscow, NYU, Penn, Purdue, Wm.&Mary

Very intense muon beam — some ideas from Djilkibaev and Lobashev

e Produce 7~ off heavy target

e Collect 7~ and decay p~ in graded solenoid

e Muon beam transport p~ in solenoid — sign and momentum select beam
e ~ 10! stopping p~ for 4 x 10! 8 GeV protons on target

Pulsed proton and muon beam to reduce “prompt” backgrounds

e Pulse width ~ 50 ns, spacing ~ 1.35 us

e Introduce ~ 600 ns deadtime after proton pulse —
electrons pass through apparatus, 7~ decay

e Require proton beam suppression during detection time of ~ 107

Detector with excellent momentum resolution, rate capabilities

e Stop p~ in graded field — increase acceptance, reduce rates
e Magnetic spectrometer with straw tube tracking devices in 1 T field

e Scintillator trigger device

Collimators

Production
Solenoid

Trigger

Stoppin Trackin
Taegetg Dectectgr

Detector
Solenoid

Transport
Solenoid




mecobeam wmolzon

Operation and Performance of MECO 1~ Beam

Beam produced by AGS operating at 8 GeV with RF bunched beam
e Revolution time 2.7 us (6 RF buckets)

e Fill 2 RF buckets 1.35 us spacing

0.03 ps 0.7 ps

e Transition at T = 8.6 iA
(p = 7.9 GeV/c)

1.35 ps

e 2 x 10! protons/bucket

2 X current intensity
1.35 us

e Cycle time 1.0 s

50% duty factor M A

e Resonantly extract 0.5 second beam spill
bunChed beam 1.0 second accelerator cycle
Transport in curved solenoid
40

[
'] FE'S L i | L i L |

. 1 L | L L L 1 L | L L L

—60 —400 —200 O 200 400 600
Z coordinate [cm]

Calculate muon yield based on measured 7~ production cross sections
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MECO Detector and Resolution Studies

yaNay

/i

/

Events / MeV

e Tracking detector with nearly axial elements — 3 layers, ~ 2.5 m long

e Electron calorimeter — space and E match with track

e Excellent resolution required to eliminate ;= DIO background

e Full GEANT simulation of detector response
— Energy loss in target (large effect, low energy tail)
— Multiple scattering (dominates intrinsic resolution)
— Position resolution (small contribution)

e Electron energy fitted by maximum likelihood method
— FWHM ~ 900 keV, no high energy tail

€<—  Muon decay in orbit

Muon conversion simulation

TR

o
T

TE

1o"£ii — 10-16
107 s data

e b s Ve g b bl
102.5 103 103.5 104
Electron Energy (MeV)

I
104.5 105 1055 106

0.25

0.225

o
— o - o
N - ~ €
w w w %)

Acgeptance .

o

0.075

0.05

0.025

TTTTTT

| sl e |

U

10 1072 107"

Background/Signal

e Pattern recognition errors simulated at realistic intensities
— no high energy tails in resolution function

wmolzon
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Expected MECO Sensitivity and Backgrounds

Sensitivity per year of running:

Running time (s) 107
Proton flux (Hz) (50% DF, 740 kHz ppulse) |4 x 1013
p/p entering solenoid 0.0043
Stopping probability 0.58
i capture probability 0.60
Fraction of u capture in time window 0.49
Electron trigger efficiency 0.90
Fitting and selection criteria 0.19
Detected events for R, = 1071¢ 5.0

Expected background:

Source Events | Comment

p~ decay in orbit 0.25 | S/N = 20 for R, = 107'¢
Tracking errors < 0.006

Radiative y~ capture | < 0.005

Beam electrons < 0.04

i~ decay in flight < 0.03 |no scatter in target

1~ decay in flight 0.04 |scatter in target

7~ decay in flight < 0.001

Radiative 7~ capture 0.07 |out of time protons
Radiative 7~ capture 0.001 |late arriving 7~
Anti-proton induced 0.007 | mostly from 7~

Cosmic ray induced 0.004 |10~* CR veto ineff.
Total background 0.45 | Assumes 10~° extinction
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Nufact00, May 2000



storagering

Comments on Use of Muon Storage Ring or Proton Driver

for Kaon and Muon Experiments |

Some general and not very insightful comments:

e Higher intensity proton beams have almost always resulted in
improved experiments — examples of beam improvements:

— Increased intensity and/or smaller beams

— Allow for separated charged beams

— Allow for neutron suppressed neutral beams (absorbers in beam)

— Allow for the possibility of tertiary beams

e Currently proposed experiments are aiming for
very large improvements in sensitivity

— A great deal will be learned in these experiments

— They will likely guide where further improvements can be made

Comments on improved CKM matrix studies:

e Proposed experiments aim to reach level of theoretical uncertainty

e Could benefit from better K/n ratio
e Could benefit from smaller solid angle beam
e Low energy technique limited by accidental veto in microbunch

e Will require debunched, slow extracted proton beam



Comments on improved p* — e"y searches:

e Done with very low energy “surface muon beams” —
not much room to reduce energy or energy spread

e Goal is to achieve background free experiment —
linear increase of sensitivity with running time

e Experiments are limited by accidental backgrounds — cannot
afford significantly higher rate without introducing background

e Suggestion of Kuno and Okada to reduce backgrounds
using polarized y* beams

Comments on improved ¢~ N — e N searches:

e Intrinsic background is independent of beam rate

e Rate limitations come from detector rates and their effect on things like
tracking errors that introduce tails in resolution functions

e Improved acceptance could come from smaller beams,
smaller physical extent of stopping target

e Improved energy resolution could come from smaller beam
momentum spread — thinner stopping target and less straggling
need low energy (few MeV) muon beam

e Could imagine x2 acceptance with smaller, lower energy spread beam,
reduction of width of resolution function by factor of 2

e Increasing stopping rate by more than a factor of 5-10 would imply sig-
nificant detector rate issues — suggestions have been made about detector
geometries to deal with this, but no credible calculation has been done

e If extremely pure muon beam of low energy could be made, necessity for
pulsed beam would go away — effectively a factor of two in acceptance

Synergism between p storage ring and rare processes:

e Study option of slow extraction and continuous cooled muon channel

e Maintain contact with ongoing physics efforts using intense y beams



