
FFAG’s Wonderful World of  
Nonlinear Longitudinal Dynamics

!Phase space properties of pendula with nonlinear 
dependence of ‘speed’ on momentum                               
– characterized by discontinuous behaviour w.r.t. parameters

!F0D0 or regular triplet FFAG lattices lead to quadratic ∆L(p)  
- gutter acceleration when energy gain/cell exceeds critical value

!Asynchronous acceleration:

!Normal mode: rf commensurate with revolution f @ fixed points   
Fundamental & harmonics

!Slip mode: rf deviates from revolution frequency @ fixed points 
Fundamental & harmonics

!Conclusions and outlook
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Phase space of the equations
x'=(1-y2) and y'=(x2 –1)
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Linear Pendulum Oscillator
Phase space of the equations

x'=y and y'=a.Cos(x)
Manifold: set of phase-
space paths delimited 
by a separatrix

Rotation: bounded 
periodic orbits

Libration: unbounded, 
possibly semi-periodic, 
orbits

Animation: evolution of phase 
space as strength `a’  varies.

For simple pendulum, 
libration paths cannot 
become connected.



Bi-parabolic Oscillator
Phase space of the equations

x'=(1-y2) and y'=a(x2-1)

Animation: evolution of phase 
space as strength `a’  varies.

Condition for connection of 
libration paths: a ≥≥≥≥ 1

Topology discontinuous at a =1
!For a < 1 there is a sideways serpentine path
!For a > 1 there is a upwards serpentine path 
!For a ≡ 1 there is a trapping of two counter-
rotating eddies within a background flow.

GIF Animations @ W3

a=2a=1

a=1/2a=1/10
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Conditions for connection of fixed 
points by libration paths may be 
obtained from the hamiltonian; 
typically critical values of system 
parameters must be exceeded.



Quadratic Pendulum Oscillator

Animation: evolution of phase 
space as strength `a’  varies.

Phase space of the equations
x'=(1-y2) and y'=a.Cos(x)

Condition for connection of 
libration paths: a ≥≥≥≥ 2/3

a=1/6

a=1

a=1/2

a=2



Cubic Pendulum Oscillator Phase space of the equations
x'=y(1-b2y2) and y'=a.Cos(x)

Animations: evolution of phase space as strengths `a,b’  vary.

Parameter `b` is varied from 0.1 to 
1 while `a` held fixed at a=1.

Parameter `b` is varied from to 0.8 to 
0.14 while `a` varies as a=1/(8b2).



Quartic Pendulum Oscillator
Phase space of the equations

x'=y2(1-b2y2)-1
and y'=a.Cos(x)

Animations: evolution of phase space as strengths `a,b’  vary.

Parameter `a` is varied from 0.1 to 
2.9 while `b` held fixed at b=1/3.

Parameter `b` is varied from to 0.1 to 
0.5 while `a` held fixed at a=3/4.



Equations of motion from cell to cell of accelerator:

En+1=En+eV cos(ωTn)

Tn+1=Tn+∆T(En+1)+(τ0-τs)

τ0=reference cell-transit duration, τs=2πh/ω

Tn=tn-nτs is relative time coordinate

Conventional case: ω=ω(E), ∆T is linear, τ0=τs, yields 
synchronous acceleration: the location of the reference particle 
is locked to the waveform, or moves adiabatically. Other particles 
perform (usually nonlinear) oscillations about the reference particle.

Scaling FFAG case: ω fixed, ∆T is nonlinear, yields 
asynchronous acceleration: the reference particle performs a 
nonlinear oscillation about the crest of the waveform; and other
particle move convectively about the reference.Two possible 
operation modes are normal τ0=τs and slip τ0≠τs (see later).



Hamiltonian: H(x,y,a)=y3/3 –y -a sin(x)
For each value of x, there are 3 values of y: y1>y2>y3

We may write values as y(z(x)) 
where 2sin(z)=3(b+a Sinx)
y1=+2cos[(z-π/2)/3],
y2=-2sin(z/3),
y3=-2cos[(z+π/2)/3]. 

Rotation manifold

Libration manifold

The 3 libration manifolds are 
sandwiched between the rotation 
manifolds (or vice versa) and 
become connected when a≥2/3. 
Thus energy range and 
acceptance change abruptly at 
the critical value.

y1

y2

y3



Phase portraits for 3 through 
12 turn acceleration; normal rf

Acceptance and energy range versus voltage for 
acceleration completed in 4 through 12 turns

Small range of 
over-voltages

Small range of 
over-voltages



The need to match the path-length 
parabola to the gutter entrance/exit 
and fixed points of the phase space 
has implications for δT1 &  δT2 etc. 
Hamiltonian parameter a= σ×ρ. 

Example: a=2/3 means σ=2, ρ=1/3 
and δT1/ δT2=3.

If requirements are violated, then 
acceptance and acceleration range 
may deteriorate.
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Addition of higher harmonics
The waveform may be flattened in the 
vicinity x=0 by addition of extra Fourier 
components n≥2

Restoring force a×sin(x) ⇒

a[n3 sinx-sin(nx)]/(n3-n)

Analogous discontinuous behaviour of 
phase space, but with revised critical 
values ac. Write ρρρρ=a/ac

n Fixed 
points/(π/2)

ac ac ×
boost

1 ±1 2/3≈0.6666 0.6666

2 ±1.1443 0.48583 0.6478

3 ±1 4/7≈ 0.5714 0.6428

4 ±0.9614 0.6238 0.6654

5 ±1 20/31≈0.645 0.6720

n=2

n=2

n=3

n=3



Tn+1=Tn+∆T(En+1)+(τ0-τs)

And vary initial cavity phases

Asynchronous acceleration with slip rf τ0≠τs
There is a turn-to-turn phase jumping that 
leads to a staggering of the phase traces 
and a smaller r.m.s. variation of rf phase.

As the number of turns increases, so does the range and number of the 
outliers. When a significant portion reach `trough phases’ the beam fails 
to receive sufficient average acceleration – limit about 8 turns f.p.c.

Phase portrait: 3-5 turn acceln. Phase portrait: 6-9 turn acceln.



Asynchronous acceleration with slip rf and harmonics

fundamental & 2nd harmonic & 3rd harmonic

Acceptance and acceleration range vary abruptly with volts/turn.
Critical ac can be estimated by tracking of particle ensemble

ac≈0.68 ac≈0.55 ac≈0.65



Phase spaces for normal rf with harmonics
8-turn

+2nd harmonic
7-turn

+3rd harmonic
6-turn

fundamental

input input input

output output output
Acceptance, ε=.49 eV.s Acceptance, ε=.52 eV.s Acceptance, ε=.57 eV.s



Phase spaces for slip rf with harmonics
8-turn

+2nd harmonic
7-turn

+3rd harmonic
6-turn

fundamental

input input input

output output output
Acceptance, ε=.52 eV.s Acceptance, ε=.49 eV.s Acceptance, ε=.51 eV.s



“Methodical, Insidious Progress on Linear Non-scaling 
FFAGs using High-frequency  (≥100 MHz) RF”
C. Johnstone et al

""NuFact03NuFact03
""Columbia Univ., NYColumbia Univ., NY
""June 10, 2003June 10, 2003

Conclusions at the time of:

!Performace of nonlinear systems, such as quadratic, cubic, quartic 
pendula, may be understood in terms of libration versus rotation manifolds 
and criteria for connection of fixed points.

!Same criteria when higher harmonics added; critical a renormalized.

!Normal and slip rf operations produce comparable performance. 
Acceleration is asynchronous and cross-crest.

!The acceptance & acceleration range of both normal and slip rf have 
fundamental limitations w.r.t. number of turns and energy increment –
because gutter paths becomes cut off.

! Regime in which slip rf performs best is one in which energy-increment 
parameter a ≈≈≈≈1; but this also regime in which phase-space paths become 
more vertical for normal rf operation.

!Nonlinear acceleration is viable and will have successful application 
to rapid acceleration in non-scaling FFAGs.



What would we do different? (October 2003)

!Consider different magnet lattices – quadratic dispersion of path 
length versus momentum may be smaller.

!Reference trajectory for construction of lattice and transverse 
dynamics is not necessarily the same as that for longitudinal 
dynamics. This allows zeros of path length and/or δT1/δT2 to be 
adjusted.

!Pay more careful attention of matching longitudinal phase space 
topology to desired input/output particle beam.  Perhaps adjust 
δT1/δT2 as function of a.

!Match orientation and size of beam to the libration manifold. 

!If F0D0 or regular triplet, dispersion of arrival times (at extraction) 
is a symmetric minimum about central trajectory H(x,y,a)=0;   
inject beam on to that trajectory.

For example, if inject/extract at x= ±π/2,  
σ =2cosh[(1/3)arccosh(a/ac)], ρ = -1+ σ2/3


