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CONTENT:
Update with our lattice design:

o A distributed RF looks very
promising.

o Tools: SYNCH, COSY, MAD

o Lattice properties — a ring picture.

o Longitudinal simulation of the
acceleration with the latest lattice
solutions (Mike Blaskiewicz).

o Conclusions




This is an old slide as a reminder of the the Montauk 99
presentation: a relevance to the minimum emittance

lattice and muon acceleration lattice.

* The minimum emittance lattice requires
reduction of the function H:

— The normalized dispersion amplitude corresponds to
the <H>12 1!

Basic Module of the Lowest Emittance Lattice
Vv, = 0.791212 v, = 0.246831




What are the basic parameters?

* Required Range of Energies (or dp/p)

— the “central” energy or momentum p, is in two
examples presented later set to 10 GEV. The
acceleration would be possible from 10 GeV up
to 20 GeV.

— Aperture limitation is defined by the maximum
value of the DISPERSION function:

o Ax<+/-30 mm
* if the 0.5 < dp/p < 1.5 then:
* D, <60 mm

* Why is the Minimum Emittance Lattice
for the electronic Storage Rings Relevant?

— The normalized dispersion amplitude
Corresponds to the <H>72 1!




What was our promise given at
the last meeting (BNL editors
meeting):

Construct a lattice where the dispersion will
oscillate between positive and negative
values but not exceeding 6 cm without
opposite bending magnets.

Ax <D dp/p=0.06 * (+-0.5) =+-0.03 m

Make a change in the circumference smaller
to reduce the RF phase change.

Try to combine the linac with a single arc.

Or make enough room for the cavities
within the ring.

Longitudinal simulation of the multiple
turns ( 10 — 20 turns)




The major result: reduced change of the circumference
the ‘SYNCH’ result (with Ernie’s combined function
dipole subroutine correction)

Distributed REF circumference ~200 meters
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TEST data for different tools: SYNCHROTRON
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The major result: reduced change of the circumference

the ‘MAD’ file result
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Picture of the ‘MAD’ ring

The FFAG lattice without opposite bends

The BEF carvities are distributed within every third cell
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BEeta [m],Dispersion [am]

Betatron functions within the two cells

FFAG lattice without opposite bends
RF is distributed within the ring
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Radius [m]

A part of the ring

The FFAG lattice without opposite bends
The KF cavities are distributed within every third cell
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Radius [m]

Two CELLS:

The FFAG lattice without opposite bends
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Betatron tunes w, v,

Betatron tunes during acceleration

FFAG laffice without opposite hends —distributed RF

Batotron funes versus momenta
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Chromaticities during acceleration — Corrected to zero
at the central muon energy of 15 GeV

FFAG lattice without opposite bends —distributed RF

Chromaticities versus momenta (corrected fo zero @ 15 GeY)
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The slipping factor 1| during acceleration

Dependence of the slipping factor % on Ap/p

The FFAG lattice without opposite bends (f9.mad file)
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All previous results have a ~1m dipole divided into 100
pieces and quadrupoles divided into 26 and 46 pieces, as
well they include the first attempt to include the end of
the quadrupole field

Magnelic field @ R=3 c¢m in |he focusing quadrupole QFS
FFAG lattice wihtout opposite bends
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At negative Ap/p lattice is ‘imaginary 7y,’

(mm)

AG,

Momentum Compaction Dependence on Ap/p
The FFAG laftice without opposite bends (f9.mad fila)
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Maximae of the betatron functions during acceleration

Maximaes of Betatron functions

FFAG laffice without opposite bends —distributed RF

Maximae of betatron functions dependence on mometas
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Maximum of the dispersion function during acceleration
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FFAG laffice withaut opposite hends -distributed RF

Maximum of D, versus mementae

0.090

o
=
&

0.070

0.060

0.030

0.040

0.030

Maximum of Dispersion function D, {m}

0.020

0.010

0.000 E

e——o Maximum af Dispersion function D,

ElllllIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII“

-0.36 -0.30 -4.24 -0.8 -0.42 -0.08 Q00 AO08 A2 4@ AN A3 A

Ap/p




22

A picture tells a story: particle path in the basic cell
during acceleration

Transverse offsels alang the basic cell for all Ap

The FFAG without opposite bends
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Radial offset in (mum )

Particle path in one of the recent examples

Muons paths along the basic cell for different momenta

Circomference 163,20 meters long i made of 32 cells
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Simulation of the acceleration
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RF considerations for FFAG rings
M. Blaskiewicz, BNL

revolution period versus energy
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660 ns lattice from D. Trbojevic and 900 ns lattice from E. Courant.

Assume negligible energy input to the RF system during acceleration|1]
1-D update equations are

Tar1 = To + T(E,) (1)

2 1 dV(3) t
(a) f{f} = wr s Ji + w"’f::rdtlv{tl} {2}
E*.-:n+l = En -+ QV{T?1+1} {3}

I{t) smoothed by 0.5 ps. V(t) updated with At = 0.15 ps.




E/g and 10*Vri (GV)

E/g and 10*Vrf (GV)

20 turn acceleration, 0.2 eV-s, 660 ns lattice
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Energetics of the RF system
For 6.25 x 10" muons the total charge is 1uC.
Assuming a factor of 2 voltage drop the initial stored energy in the
RF cavities is
U=10GV x 1uC x % = 13kJ

The stored energy is related to the voltage and impedance by
VE
U —

g
Q

Taking a total voltage of 500 MV and w,; = 27w x 200MHz one
obtains (/) = 7.6 k.
The simulations used this impedance and V' = 600 MV so the voltage
dropped to 400 MV at the end of the cycle.
Taking 10 MV per cavity the requisite B/ per cavity is 1262
The stored energy per cavity is 300 J.
For £ = 10 MV /m the volume is 0.7m?.
With 60 cavities some extra straight sections may be required but,

since 10 GeV > 106 MeV = my,c*, the straights will have a negligible
effect on dT'/dE.
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Conclusions:

* The latest results in the FFAG lattice
without opposite bends with distributed
RF are very encouraging.

* Present codes MAD and SYNCH should
be checked by either other codes or by an
analytical calculation.

* If it is shown that the presented idea is
really possible the whole muon
acceleration should be redone.




