

Ionization Cooling with Lithium Lenses

Valeri Lebedev Fermilab

Muon Collider Design Workshop December 1-3, 2009 • Brookhaven National Laboratory

<u>Objectives</u>

- Lithium lens versus 50 T solenoid
 - Is it competitive?

<u>Outline</u>

- Ionization cooling with lithium lens
- FNAL Lithium lens
- Limitations on lithium lens operation and their mitigations
- Conclusions

Cooling and Diffusion

Energy loss and multiple scattering are closely related

$$\frac{dE}{ds} = \frac{4\pi Z n_a e^4}{mc^2 \beta^2} L_C(\beta), \quad L_C(\beta) = \ln\left(\frac{\sqrt{T_{\max}m_e c^2 \beta^2 \gamma^2}}{I}\right)$$
$$\frac{d\overline{p_x}^2}{ds} = \frac{d\overline{p_y}^2}{ds} = \frac{4\pi Z (Z+1) n_a e^4}{c^2 \beta^2} L_D, \quad L_D \approx \ln\left(\frac{r_a}{r_n}\right)$$

In PDB:
$$\theta_0^2 = \left(\frac{13.6 \,\text{MeV}}{c\beta \,p}\right)^2 \frac{x}{X_0} \left(1 + 0.038 \ln\left(\frac{x}{X_0}\right)\right)$$

where x in $\ln(x/X_0)$ is set by $x (dE/dx) \approx E$

p [MeV/c]

	<i>p</i> = 100 MeV/c	
	Lc	LD
Η	10.6	8.7
He	10.3	7.7
Li	9.8	7.6
Be	9.2	7.5

Equilibrium rms angle in thin target
approximation (
$$L \ll \beta_{x,y}$$
) are
 $\overline{\theta_x^2} = \overline{\theta_y^2} = \frac{m_e}{m_\mu} \frac{(Z+1)}{2\gamma} \frac{L_D}{L_C(\beta)}$

 \Rightarrow Normalized emittance

$$\varepsilon_{nx} = \frac{m_e}{m_{\mu}} \frac{(Z+1)}{2} \frac{L_D}{L_C(\beta)} \beta \langle \beta_x \rangle_{t \, \text{arg}}$$

Ionization cooling with lithium lens, Valeri Lebedev, Dec. 1, 2009

Sum and Redistribution of Cooling Decrements

Sum of the decrements does not depend on details of cooling scheme

$$\begin{split} \lambda_{x0} &\equiv \frac{1}{p_x} \frac{dp_x}{ds} = \frac{1}{\beta c p} \frac{dE}{ds}, \quad \lambda_{y0} = \lambda_{x0}, \\ \lambda_{s0} &= \frac{1}{\beta c} \frac{d}{dp} \left(\frac{dE}{ds} \right) \\ &= \sum_k \lambda_k = \frac{1}{\beta c p} \left(2 \frac{dE}{ds} + p \frac{d}{dp} \left(\frac{dE}{ds} \right) \right) \\ &\implies \sum_k 2\lambda_{x0} \left(\beta^2 + 0.08 \right), \quad 0.5 \leq \beta \gamma \leq 5 \end{split}$$

 Long. motion is unstable for p≤300 MeV in absence of decrement redistribution
Redistribution of decrements allows one to have good cooling for all 3 degrees of freedom for smaller energy

<u>Equilibrium Angular Spread</u>

- Decrease of cooling energy results in an increase of equilibrium angular spread and, consequently, an increase of non-linear effects
- Equilibrium rms angle in lithium is ~2 times larger than in liquid hydrogen

Beam focusing with Lithium Lenses & Solenoids

 For solenoidal focusing (Edwards - Teng β-functions)

$$\beta_{\perp sol} = \frac{2pc}{eB_0}$$

- Lithium lens gradient is limited by magnetic field at its aperture
 - At the final stage of cooling the equilibrium β-function is

where A_{σ} is the lens aperture over rms beam size in equilibrium

- Both β-functions linearly depend on B
 - B=150 kG for solenoid & B=75 kG for Li lens are based on present technology
- Accelerating cavities are located inside low field solenoids

Ionization cooling with lithium lens, Valeri Lebedev, Dec. 1, 2009

B=150 kG, $β_{min}$ =4.7 cm

DISP X

ΒΕΤΑ Υ

ΒΕΤΑ Χ

DISP Y

1.33

Sat Nov 21 22:52:44 2009 OptiM - MAIN: - Z:\My Documents\/

Lithium Lens versus Solenoid

- Decr. redistribution requires aperture increase \Rightarrow larger β_{\perp} & ϵ
 - Aperture is not a problem for solenoid

Lithium Lens and Limitations on its Gradient

- Li lens is competitive to solenoid for the last stages of cooling when only transverse cooling is used
 - It additionally suggests a correction for spherical aberrations
- Li lens is not good for initial stage of cooling when the beam size is large
 - \Rightarrow Large radius
 - \Rightarrow Large lens current
- Major limitations of Li lens focusing
 - Surface magnetic field
 - Pressure and material fatigue
 - Lens overheating
 - Skin-effect requires long pulses

<u>Fermilab Lithium Lens</u>

- Long evolution of the design
 - Diffusion bonded welding
 - ♦ 3-6 month lifetime
 - ~(5-10)·10⁶ pulses
- Material fatigue is the major problem limiting the lifetime
 - Pressure preloaded Li
- 1-to-8 current transformer
 - ~4 kV capacitor bank

FNAL Lens Parameters

Length	15 cm
Radius, r _L	1 cm
Repetition rate	0.455 Hz
Pulse type	half of sine
	wave
Pulse duration, T_p	360 μ s
Skin-depth@ $f=1/(2 T_p)$	0.46 cm
Total lens resistance	53 μΩ
Lens current	430 kA
Lens gradient	75 kG/cm
dP/ds at surface	9 W/cm ²
ΔT across lens	5 <i>C</i> °
Magnetic field	230 kg/cm^2
pressure, $B^2/8\pi$	
Long. stress in 1.3	2*9
mm thick Ti shell	kg/mm ²

Recent FNAL Lens Picture (Apr. 2009)

<u>Skin-Effect</u>

 Pulse length should be long enough for field penetration into lithium
For FNAL lens: δ/r_L=0.46

$$\delta = \frac{c}{\sqrt{2\pi\sigma\omega}}$$

If current pulse is close to a half sinusoid (FNAL) the field penetration can be approximated well by result obtained for harmonic lens current $(\phi > 0 \text{ for practical cases})$ $B(r,t) = \frac{2I_0}{cr_0} \operatorname{Re}\left(\frac{\operatorname{ber}_1\left(\sqrt{2} \frac{r}{\delta}\right) + i\operatorname{bei}_1\left(\sqrt{2} \frac{r}{\delta}\right)}{\operatorname{ber}_1\left(\sqrt{2} \frac{r_L}{\delta}\right) + i\operatorname{bei}_1\left(\sqrt{2} \frac{r_L}{\delta}\right)}e^{i\omega t}\right)$

B(r) for different times during half period sinusoidal pulse of 350 μ s. Time is expressed through the RF phase so that the pulse end and beginning correspond to \pm 90 deg. Dotted line represents solution for continuous sinusoidal wave.

<u>Lens Heating</u>

 Pulse length should be long enough for field penetration
Combining

$$T_{pulse} = \kappa_T \frac{\pi}{\omega_{cr}}, \quad r_L = \delta = \frac{c}{\sqrt{2\pi\sigma\omega_{cr}}},$$
$$B_0 = \kappa_I \frac{2I_0}{cr_L}, \quad R = \frac{1}{\sigma} \frac{L}{\pi r_L^2},$$
$$P = \frac{RI^2}{2} f_{rep} T_{pulse}$$

One obtains the power density on the lens surface

$$\frac{dP}{ds} = \frac{\kappa_T \kappa_I^2}{8} B_0^2 f_{rep} r_L$$

The power density does not depend on material conductivity!!! • 15 Hz, 1 cm, 75 kG \Rightarrow ~300 W/cm²

<u>Mechanical Stress</u>

Relationship between magnetic field and mechanical pressure

$$\nabla \left(P + \frac{B^2}{8\pi} \right) = 0 \quad \Longrightarrow \quad P + \frac{B^2}{8\pi} = P_{preload} + \frac{B_0^2}{8\pi}$$

That results in a radial compressing and an axial force on Be windows

B=0 at window
$$\Rightarrow F = \pi r_L^2 \left(P_{preload} + \frac{B_0^2}{8\pi} \right)$$

- ⇒ Increase of radius results in a thickness increase of windows and Ti shell
- Li has to be loaded under pressure to avoid a pinch instability
 - It approximately doubles the effect of magnetic pressure and stress on windows

Tentative Beam and Lens Parameters

 Beam energy choice is a compromise between ɛ_{n⊥equilibrium} and the dɛ_L / ds
Further energy increase would make the lens easier but introduces too large long. heating

o [MeV/c]

Beam energy	49 MeV
Beam momentum	113 MeV
Longitudinal cooling factor, gs	0.775 !!!
Surface field	75 kG
Equilibrium emittance	130 mm mrad
Energy loss	1.25 MeV/cm
Length	8 cm
Radius, r _L	1 cm
Repetition rate	15 Hz
Pulse type	half of sine wave
Pulse duration, T_p	400 μ s
Lens current	430 kA
dP/ds @ on surface	320 W/cm ² !!!
ΔT across lens	200 <i>C</i> ° !!!
Magnetic field pressure	230 kg/cm ²
Long. stress in 1.3 mm thick Ti shell	2*9 kg/mm ²

Ionization cooling with lithium lens, Valeri Lebedev, Dec. 1, 2009

<u>Lithium Lens Heating Mitigation</u>

- Solid lithium lens has two problems
 - Temperature gradient across the lens
 - Too large power density at lens boundary to be removed by water cooling
- Both problems can be addressed by liquid lithium lens (Silvestrov, BINP)
 - Required velocity of the lithium ~ 20 cm/s (3.6 l/min)
- Fermilab had a program for the liquid lens development but it was not finished
 - More difficult than expected
 - It can be easier for 75 kG/cm than for 100 kG/cm
 - Liquid lens gradient of 100 kg/cm is not really necessary for Run II
 - Further development of solid lens satisfied our needs
 - Safety issues
 - Lens reliability is one of the main problems
 - Present lens lifetime, ~0.5 year, is hardly sufficient when ~10 lenses or more are operating in the cooling channel
 - 30 time increase of the repetition rate does not make it easier

<u>Hybrid Lens</u>

Splitting lens conductor into separate smaller thickness current layers could be used to shorten pulse length

 $T_{pulse} \propto \sigma d^2$

- LiH prevents beryllium cylinders from collapse
 - Much smaller force on caps (windows) in comparison with Li lens
- Lens filling: Liquid LiH is filled to take the rest of the space after beryllium construction is assembled
- Major limitations are
 - Pulser making 500 kA in ~50 µs time looks feasible but not easy (~30 kV)
 - Ability to withstand pulsed mechanical stress
 - Requires more insight and actual tests
 - LiH is not good thermo-conductor and should take smaller fraction of the volume

Ionization cooling with lithium lens, Valeri Lebedev, Dec. 1, 2009

Conclusions

- Cooling with lithium lenses looks feasible
- However there are problems which limit its possible use in the paradigm of present lens design
 - Surface magnetic field is limited to ~75 kG because of mechanical stresses
 - Ohmic lens heating limits the repetition rate to <5 Hz
 - $\bullet~$ Surface field decrease reduces stresses $\propto B^2$ but power density as $\propto B$
- Liquid lithium lens can address the problem of heat load and can be competitive to schemes with solenoidal focusing
- To apprehend possibilities created by hybrid lens we need better understanding of its mechanical properties and powering scheme
- It is rather improbable that 3D cooling can be created with lithium lenses
 - Required aperture increase results in a reduction of lens gradient and, consequently, increases the equilibrium emittance