

LEMC Scenario

(More of a Goal)

Rolland Johnson, Muons, Inc.

Rol -12/03/2007

BNL MC 2007 workshop

1

Muons, Inc. Philosophy Nothing designed today will be used exactly as imagined now Better ideas always come along Muon Colliders need an existence-proof design To get support (more attractive is better) Innovation is our contribution Push ideas, technology Source of our income

14 2008 DOE Ph I Proposals

	Working Title	Inst.	PI subl	PI	DOE topic/office
•	Achromatic low beta for colliders	JLab	Johnson	Derbenev	49a HEP
•	RF Breakdown Studies	LBNL	Sah	Li	50a HEP RF
	GUI for Radiation Simulations	Jlab	Roberts	Degtiaren	ko 3a BES
-	HTS High Field Magnets	FSU	Kahn	Schwartz	51a HEP HTS
	High Power SRF coupler	JLab	Johnson I	Rimmer	3b BES
•	Hydrogen Filled RF Cavities	FNAL	Johnson \	ronehara	50a HEP RF
	Multi-Pixel Photon Counters	FNAL	Abrams	Deptuch	52a HEP Det
-	Multi-purpose Fiber Optic for HTS	FSU	Johnson	Schwartz	51b HEP HTS
	Novel Muon Collection	FNAL	Johnson	Ankenbra	ndt 49a HEP
•	Plasma Lenses	BNL	Kahn	Hershcovit	ch 49b HEP
•	Pulsed-focusing RLA	Jlab	Johnson	Bogacz	49a HEP
	Rugged Ceramic Window	Jlab	Johnson	Rimmer	36a NP
	Ultra-pure Metallic Deposition	FNAL	Kuchnir	Wu	36a NP
	User-Friendly Detector simulations	Uchi	Roberts	Frisch	45b nonprolif
	(all are related to Mu	ion Co	lliders)		

Rol -12/03/2007

Muons, Inc. Recent Inventions and Developments

- New Ionization Cooling Techniques
 - Emittance exchange with continuous absorber for longitudinal cooling
 - Helical Cooling Channel
 - Effective 6D cooling (simulations: cooling factor >50,000 in 160 m)
 - Momentum-dependent Helical Cooling Channel
 - 6D Precooling device
 - 6D cooling demonstration experiment (>500% 6 D cooling in 4 m)
 - 6D cooling segments between RF sections
 - Ionization cooling using a parametric resonance
- Methods to manipulate phase space partitions
 - Reverse emittance exchange using absorbers
 - Bunch coalescing (neutrino factory and muon collider share injector)
- Technology for better cooling
 - Pressurized RF cavities
 - simultaneous energy absorption and acceleration and
 - phase rotation, bunching, cooling to increase initial muon capture
 - Higher Gradient in magnetic fields than in vacuum cavities
 - High Temperature Superconductor for up to 50 T magnets
 - Faster cooling, smaller equilibrium emittance

Rol -12/03/2007

BNL MC 2007 workshop

See Fernow lattice with magnetic field suppression for vacuum RF

Alternative technological Muons, Inc. paths to a LEMC are emerging Muon Capture and Precooling in HCC 6-d Cooling – (first 6 orders of 6D cooling) • HCC with imbedded High-Pressure RF (original), MANX HCC segments alternating with RF, and/or Guggenheim Helix Extreme Transverse Cooling – (2 orders) • Parametric-resonance Ionization Cooling, • Reverse Emittance Exchange REMEX, • High-Temperature Superconductor for high B, and • Ring designs using clever field suppression for RF Acceleration in ILC structures Dogbone RLA with pulsed quads Rol -12/03/2007 BNL MC 2007 workshop 5

Muons, Inc. Particle Motion in a Helical Magnet

Combined function magnet (invisible in this picture) Solenoid + Helical dipole + Helical Quadrupole

Red: Reference orbit Blue: Beam envelope

Dispersive component makes longer path length for higher momentum particles and shorter path length for lower momentum particles.

Opposing radial forces $F_{h-dipole} \approx p_z \times B_{\perp}; \quad b \equiv B_{\perp}$

$$F_{solenoid} \approx -p_{\perp} \times B_z; \quad B \equiv B_z$$

Transforming to the frame of the rotating helical dipole leads to a time and z – independent Hamiltonian

b' added for stability and acceptance

Some Important Relationships

Hamiltonian Solution

 $p(a) = \frac{\sqrt{1 + \kappa^2}}{k} \left[B - \frac{1 + \kappa^2}{\kappa} b \right] \qquad k = 2\pi/\lambda \qquad \kappa = ka$ $q = \frac{k_c}{k} - 1 = \beta \sqrt{\frac{1 + \kappa^2}{3 - \beta^2}} \qquad k_c = B\sqrt{1 + \kappa^2}/p$

Longitudinal cooling only

Equal cooling

decrements

$$\hat{D} \equiv \frac{p}{a} \frac{da}{dp} = 2 \frac{1 + \kappa^2}{\kappa^2} \qquad q = 0$$

$$\text{-Momentum slip} \quad \eta = \frac{d}{d\gamma} \frac{\sqrt{1+\kappa^2}}{\beta} = \frac{\sqrt{1+\kappa^2}}{\gamma\beta^3} \left(\frac{\kappa^2}{1+\kappa^2} \hat{D} - \frac{1}{\gamma^2} \right) \qquad \frac{\kappa^2}{1+\kappa^2} \hat{D} \sim \frac{1}{\gamma_{transition}^2}$$

HCC as Decay Channel

40 m evacuated helical magnet pion decay channel followed by a 5 m liquid hydrogen HCC (no RF)

Adjusting gamma t to get a short muon bunch

compressed muon bunch

Rol -12/03/2007

5 m Precooler and MANX

New Invention: HCC with fields that decrease with momentum. Here the beam decelerates in liquid hydrogen (white region) while the fields diminish accordingly.

Rol -12/03/2007

Precooler + HCCs *With first engineering constraints*

Series of HCCs

Precooler

Solenoid + High Pressurized RF

The acceptance is sufficiently big.Transverse emittance can be

- smaller than longitudinal emittance.
- •Emittance grows in the longitudinal direction.

Rol -12/03/2007

- •Use a pillbox cavity (but no window this time).
- •RF frequency is determined by the size of helical solenoid coil.
- \rightarrow Diameter of 400 MHz cavity = 50 cm
- \rightarrow Diameter of 800 MHz cavity = 25 cm
- \rightarrow Diameter of 1600 MHz cavity = 12.5 cm
- •The pressure of gaseous hydrogen is 200 atm at room temp to adjust the RF field gradient to be a practical value.
- →The field gradient can be increased if the breakdown would be well suppressed by the high pressurized hydrogen gas.

parameter s	λ	К	Bz	bd	bq	bs	f	Inner d of coil	Expected Maximum b	E	RF phase
unit	т		Т	Т	T/m	T/m2	GHz	ст	Т	MV/m	degree
1st HCC	1.6	1.0	-4.3	1.0	-0.2	0.5	0.4	50.0	6.0	16.4	140.0
2nd HCC	1.0	1.0	-6.8	1.5	-0.3	1.4	0.8	30.0	8.0	16.4	140.0
3rd HCC	0.5	1.0	-13.6	3.1	-0.6	3.8	1.6	15.0	17.0	16.4	140.0

371 kW total/pillbox during passage of trains, ~6 kW average

Note that for a given Ez, and scaled dimensions R/Q remains unchanged: the 1.6 GHz pillbox has the same R/Q as the 400 MHz one.

BNL MC Workshop

MuCool Test Area (MTA)

Wave guide to

coax adapter

Pressure barrier

Mark II Test Cell

Rol -12/03/2007

Solenoid

Muons, HPRF Test Cell Measurements in MTA

• Paschen curve verified

- Maximum gradient limited by breakdown of metal.
- Cu and Be have same breakdown limits (~50 MV/m), Mo(~63MV/m), W(~75MV/m).
- Results show no B dependence, much different metallic breakdown than for vacuum cavities.
- Need beam tests to prove HPRF works. Rol -12/03/2007 BNL

Parametric-resonance Ionization Cooling

Excite ½ integer parametric resonance (in Linac or ring)
Like vertical rigid pendulum or ½-integer extraction
Elliptical phase space motion becomes hyperbolic
Use xx'=const to reduce x, increase x'
Use IC to reduce x'
Detuning issues being addressed (chromatic and spherical aberrations, space-charge tune spread). Simulations underway.
Smaller beams from 6D HCC cooling essential for this to work!

Reverse Emittance Exchange, Coalescing

- p(cooling)=100MeV/c, p(colliding)=2.5 TeV/c => room in Δp/p space
- Shrink the transverse dimensions of a muon beam to increase the luminosity of a muon collider using wedge absorbers
- Allow bunch length to increase to size of low beta
- Low energy space charge, beam loading, wake fields problems avoided
- 20 GeV Bunch coalescing in a ring Neutrino factory and muon collider now have a common path

Bhat et al. Coalescing

20 GeV muons in a 100 m diameter ring

Rol -12/03/2007

Muons, Inc. 700 m muon Production and Cooling (showing approximate lengths of sections)

- 8 GeV Proton storage ring, loaded by Linac
 - 2 T average implies radius=8000/30x20~14m
- Pi/mu Production Target, Capture, Precool sections
 - 100 m (with HP RF, maybe phase rotation)
- 6D HCC cooling, ending with 50 T magnets
 - 200 m (HP GH2 RF or LPS HCC and SCRF)
- Parametric-resonance Ionization Cooling

 100 m
- Reverse Emittance Exchange (1st stage)
 - 100 m
- Acceleration to 2.5 GeV
 - 100 m at 25 MeV/c accelerating gradient
- Reverse Emittance Exchange (2nd stage)
 - 100 m
- Inject into Proton Driver Linac
- Total effect:
 - Initial 40,000 mm-mr reduced to 2 mm-mr in each transverse plane
 - Initial $\pm 25\% \Delta p/p$ reduced to 2%, then increased
 - exchange for transverse reduction and coalescing
 - about 1/3 of muons lost to decay during this 700 m cooling sequence
- Then recirculate to 23 GeV, inject into racetrack NF storage ring

Detailed theory in place,

simulations underway.

Fernow-Neuffer Plot

Cooling required for 5 TeV COM, 10³⁵ Luminosity Collider. Need to also look at losses from muon decay to get power on target. Higher magnetic fields from HTS can get required HCC performance.

Rol -12/03/2007

Muons, Inc.

new ideas under development:

H₂-Pressurized RF Cavities **Continuous Absorber for Emittance Exchange** Helical Cooling Channel **Parametric-resonance** Ionization Cooling **Reverse Emittance Exchange** RF capture, phase rotation, cooling in HP RF Cavities Bunch coalescing Very High Field Solenoidal magnets for better cooling **Z-dependent HCC** MANX 6d Cooling Demo

Besides these SBIR-STTR supported projects, note that Bob Palmer, Rick Fernow, and Steve Kahn have another path to low emittance.

Rol -12/03/2007

Muons, Inc. Muon Collider use of 8 GeV SC Linac

Instead of a 23 GeV neutrino decay racetrack, we need a 23 GeV Coalescing Ring. Coalescing done in 50 turns (~1.5% of muons lost by decay). 10 batches of 10x1.6 10¹⁰ muons/bunch become 10 bunches of 1.6x10¹/bunch. Plus and minus muons are coalesced simultaneously. Then 10 bunches of each sign get injected into the RLA (Recirculating Linear Accelerator).

23

1.5 TeV COM Example

Rol -12/03/2007

5 TeV ~ SSC energy reach

- ~5 X 2.5 km footprint
- Affordable LC length (half of baseline 500 GeV ILC), includes ILC people, ideas
- More efficient use of RF: recirculation and both signs
- High L from small emittance!
- 1/10 fewer muons than originally imagined:a) easier p driver, targetryb) less detector background
- c) less site boundary radiation

Muon Collider Emittances and Luminosities

After:	ε _N tr	ε _N long.
Precooling	20,000µm	10,000 µm
Basic HCC 6D	200 µm	100 µm
Parametric-resonance IC	25 µm	100 µm
Reverse Emittance Exchange	e 2 µm	2 cm

Many things get easier as muon lifetime increases! At 2.5 TeV on 2.5 TeV

$$L_{peak} = \frac{N_1 n \Delta v}{\beta^* r_{\mu}} f_0 \gamma = 10^{35} / cm^2 - s$$

$$\gamma \approx 2.5 \times 10^4 n = 10$$

$$f_0 = 50 kHz \quad N_1 = 10^{11} \mu^-$$

$$\Delta v = 0.06 \quad \beta^* = 0.5 cm$$

$$\sigma_z = 3 mm \quad \Delta \gamma / \gamma = 3 \times 10^{-4}$$

$$T_{\mu} \approx 50 ms \Rightarrow 2500 turns / \tau_{\mu}$$

20

 $\langle L \rangle \approx 4.3 \times 10^{34} / cm^2 - s$ $Power = (26 \times 10^{9})(6.6 \times 10^{13})(1.6 \times 10^{-19}) = 0.3MW$

Rol -12/03/2007

BNL MC 2007 workshop

 $0.3 \,\mu^{\pm} / p$

Parameter Spreadsheet

- On workshop web page
- A working document to connect pieces
- Consistent beginning to end connections – Example: change collider E, see P on target change
- Will become basis for design report
- Includes play pages for "what-if" scenarios
- See Mary Anne or me with suggestions for additions and improvements e.g. Site boundary radiation levels, wall-plug power, linac wakefield and beam loading parameters, cost, etc.

Muons, Inc.

Important Recent Developments

- Anticipated LHC discoveries are inspiring muon cooling and collider research
 - Accelerator Physics Center formed at Fermilab, MCTF
 - New SBIR projects
- RF cavities pressurized with dense hydrogen under development
 - Support surface gradients up to 70 MV/m even in large magnetic fields
 - p beam line available soon for next tests
- Helical Solenoid magnet invention will simplify HCC designs
 - Prototype section SBIR funded for design, construction, and testing
 - New HTS materials look promising for very large fields
- MANX is close to being a supported 6D demonstration experiment
 - Collaboration being formed, experimental proposal drafted
 - Looking for collaborators!

Rol -12/03/2007

Updated Letter of Intent to Propose

MANX, A 6D MUON BEAM COOLING EXPERIMENT

Robert Abrams¹, Mohammad Alsharo'a¹, Charles Ankenbrandt², Emanuela Barzi², Kevin Beard³, Alex Bogacz³, Daniel Broemmelsiek², Alan Bross², Yu-Chiu Chao³, Mary Anne Cummings¹, Yaroslav Derbenev³, Henry Frisch⁴, Stephen Geer², Ivan Gonin², Gail Hanson⁵, Martin Hu², Andreas Jansson², Rolland Johnson¹, Stephen Kahn¹, Daniel Kaplan⁶, Vladimir Kashikhin², Sergey Korenev¹, Moyses Kuchnir¹, Mike Lamm², Valeri Lebedev², David Neuffer², David Newsham¹, Milorad Popovic², Robert Rimmer³, Thomas Roberts¹, Richard Sah¹, Vladimir Shiltsev², Linda Spentzouris⁶, Alvin Tollestrup², Daniele Turrioni², Victor Yarba², Katsuya Yonehara², Cary Yoshikawa², Alexander Zlobin²

> ¹Muons, Inc. ²Fermi National Accelerator Laboratory ³Thomas Jefferson National Accelerator Facility ⁴University of Chicago ⁵University of California at Riverside ⁶Illinois Institute of Technology

http://www.muonsinc.com/tiki-download_file.php?fileId=230

Contact, <u>rol@muonsinc.com</u>, (757) 870-6943
 Contact, jansson@fnal.gov, (630) 840-2824

Rol -12/03/2007

6DMANX demonstration experiment Muon Collider And Neutrino Factory eXperiment

- To Demonstrate
 - Longitudinal cooling
 - 6D cooling in cont. absorber
 - Prototype precooler
 - Helical Cooling Channel
 - Alternate to continuous RF
 - 5.5⁸ ~ 10⁶ 6D emittance reduction with 8 HCC sections of absorber alternating with (SC?)RF sections.
 - New technology

Uses for a HCC

- Decay channel
- Precooler
- MANX 6D cooling demo
- Stopping muon beam cooler
 - can add RF for even better cooling (path to a MC)
- Fast 6D Emittance reduction
 - new approach to neutrino factory (path to a MC)
- Preliminary to extreme cooling (needed for a MC)
 - Parametric Ionization Cooling
 - Reverse Emittance Exchange and muon bunch coalescing

Design of HCC Magnet

MANX