Current-Dependent Effects in Muon Acceleration

J. Scott Berg Brookhaven National Laboratory Muon Collider Design Workshop 5 December 2007

Basic Parameters

❍ Accelerate from 90 GeV to 4 TeV in 2 stages \Box 90 GeV to 600 GeV ❑ 600 GeV to 4 TeV ❍ One bunch each sign \sim 2 \times 10¹² per bunch ❑Will discuss lower charge $\sigma_{\rm z}=3$ mm throughout

ILC Accelerating Structures

❍ Assume ILC accelerating structures ❍ No bunch trains, can pick frequency ❍ SCRF: don't win at higher frequency

ILC Accelerating Structure

Decay

❍ Assume constant accelerating gradient *V*

$$
\frac{N}{N_0} = \left(\frac{E + \sqrt{E^2 - (mc^2)^2}}{E_0 + \sqrt{E_0^2 - (mc^2)^2}}\right)^{-\frac{mc^2}{qVc\tau}}
$$

❍ Factor in energy gain determines decay

❍ Decays are relatively modest

 \Box With decent real estate gradient ($>$ 4 MV/m) ❑ Above 10 MV/m little is gained

Decays vs. Gradient

7

- ❍ More passes through RF cavities is better
- ❍ Fewer structures
	- ❑ Less hardware cost ❑ Lower static cryogenic load
- ❍ More efficient with RF power
	- ❑ Energy cavity initially filled with ❑ Lower dynamic cryogenic load

8

$$
n = \frac{1}{2\pi} \frac{\Delta E}{p_{\text{max}}c} \frac{B_{\text{avg}}c}{V_{\text{avg}}}
$$

- ❍ Tradeoff in fractional space usage
- ❍ Higher average gradient
	- ❑ Larger fraction of ring occupied by cavities ❑ Lower average magnetic field (longer ring) ❑ Fewer decays ❑ Fewer turns

Turns vs. Decay Loss

Beam Loading

❍ Definition: reduction in amplitude of accelerating voltage by beam ❑ Cavity stored energy transferred to beam ❍ Beam loading is good ❑ Otherwise stored energy is wasted ❍ Many turns: must replace lost energy ❑ Requires RF power

Beam Loading: Straight Linac

- \circ At 3 Hz, 7.7 MW in the beams
	- ❑ Independent of charge for fixed luminosity
- ❍ Two linacs: 90 MW of RF stored energy
	- ❑ Increases with repetition rate
	- ❑ Fixed luminosity, increase rep rate if charge goes down
	- ❑Wall plug some factor higher. . .
- ❍ Not to mention 240,000 ILC structures. . .

Replacement RF Power

- ❍ Each bunch extracts 10.5 J (out of 126 J) ❍ Many passes, must replace lost energy ❍ Peak power challenging ❑ Directly impacts klystron cost □ Limitation of input coupler? ❍ Longer circumference, less power required
- ❍ Less charge, less power required

Replacement RF Power Example Numbers

❍ Low energy ring *V*avg (MV/m) *B*max (T) Power (MW) 5 4 1.58 10 4 1.15 5 8 3.15 10 8 2.30

❍ These powers are high for input coupler ❑ Cavities with fewer cells

❍ 6.67 times lower for high energy: reasonable

RF Power Efficiency

❍ RF power efficiency depends product of ❑ Number of turns ❑ Fractional energy extraction \Diamond 16.6% my numbers ❍ Product ideally around 4 (24 turns) ❍ Lower charge ❑ Efficiency more important (higher rep rate)

❑ More turns to get good efficiency

RF Power Efficiency

"Higher Order Mode" Losses

- ❍ Characterized by loss factor
- Short bunches: proportionally to inverse square root of bunch length
- ◯ Single pass

OKHAVEN

- ❑ 1.07 MV average energy loss □ Also half energy spread ❑ Out of 32.7 MeV energy gain
- ❍ Additional nonlinear effects
- ❍ Can lead to instabilities

"Higher Order Mode" Losses Compensation

❍ Run off-crest to compensate

- ❑ 12◦ is sufficient
- ❍ Allow to generate RF slope
	- ❑ Synchrotron oscillations desirable
	- ❑ Naturally in right direction
- ❍ Nonlinearities will mess this up
	- ❑ Emittance growth
- ❍ Need inductive impedance also

"Higher Order Mode" Losses Instabilities

- ❍ Haven't studied very much
- ❍ Synchrotron tune in principle very high
	- ❑ Stabilizes short-range instabilities
- ❍ Talking about small number of turns
	- \square 25 or so
	- \Box Typical instability growth times: 10^4 turns or more
	- ❑ But normally not so much impedance

RF Frequency Adjustment

❍ Time of flight depends on energy ❑ Except for RLAs ❍ Adjust RF frequency to match \Box Synchrotron, low energy, $Q_L \approx 1.5 \times 10^6$: OK □ Don's hybrid, $Q_L \approx 4 \times 10^4$: No □ Scaling FFAG, low E, $Q_L \approx 1.4 \times 10^3$: No □ Scaling FFAG, high E, $Q_L \approx 6.5 \times 10^5$: Maybe

RF Frequency Adjustment Ideas

- ❍ Refine hybrid designs to reduce time variation ❍ R&D on frequency shifting ❍ Use RLAs
	- ❑ Polygon shape: more synchrotron oscillation ❑ Poor efficiency
- ❍ FFAG/RLA hybrid?
- ❍ Low current: linac-like accelerating mode ❑ Semi-isochronous FFAGs

Conclusions

- ❍ Decays small if average gradients above 10 MV/m
- ❍ RF power efficiency comes from more turns ❑ Bigger problem with smaller currents ❑ Higher fields always help
- ❍ "Higher order mode" losses significant ❑ Biggest problem: longitudinal emittance growth from potential well distortion ❑ Instabilities likely OK, but check

Conclusions

❍ Biggest problem is time of flight variation ❍ Polygon-shaped RLA is ideal solution ❍ Low currents avoid short range wakes ❑ Can consider linac-like accelerating modes

