

### Status of Phase Ionization Cooling using Parametric Resonance

### David Newsham Muons, Inc.

Muon Collider Design Workshop – BNL 3-7 December 2007

6 December 2007

Muon Collider Design Workshop -- BNL



### **PIC Concept**



### Muons, September PIC Lattice Design

- Only uses dipoles and quadrupole magnets with no "fringe" fields.
- Each bend (½-cell) consists of 2 sector dipoles and 2 thin quads that act in unison.
  - All bends have the same angle (dipole field magnitude) only the bend direction changes.
  - All quads have the same unperturbed field.
  - Quads are thin to minimize sagitta effects.
  - Quad field literally encircle the dipoles.
- 2 independent quantities:
  - Bend angle field automatically adjusted by G4Beamline
  - Quadrupole field gradient
- Y tune is only affected by quadrupole gradient
- X tune is affected by both quad gradients and bend angle.
- End effect is focusing in both planes.
- Fringe field effects will change parameter settings. Both tunes will be coupled but can be characterized by the same 2 independent parameters. Aberrations will be affected by fringes.



### Muons, Inc. Post September Lattice Considerations

- Aberration (2<sup>nd</sup> order) compensation theory (Derbenev) requires that x and y have different phase advances per cell.
  - Doesn't require dramatically new lattice.
  - Solves the symmetric (x-y) perturbation problem.
- The same theory requires sextupole magnets with a spatial wavelength of ½ dispersion period.
  - Current dipole-pairs are not appropriately spaced.
  - Current dipole-pairs can be separated and the quads made into combined-function multipole magnets.



 Increased symmetry simplifies lattice (although "simple" and "PIC" should never be used together).





Based on Mathematica thick lens matrix analysis including perturbation

Muon Collider Design Workshop -- BNL



| Tune Condition                                  | $\upsilon_x$ | υγ  | Dipole Bend Angle | Quad Gradient (1 cm) |
|-------------------------------------------------|--------------|-----|-------------------|----------------------|
| $\lambda_x = \lambda_y = 2\lambda_D$            | 1/2          | 1/2 | 88.42°            | -48.97 T/m           |
| $1/_2\lambda_x = \lambda_y = 2\lambda_D$        | 1⁄4          | 1/2 | 69.23°            | -48.97 T/m           |
| $\lambda_x = \frac{1}{2}\lambda_y = 2\lambda_D$ | 1/2          | 1⁄4 | 70.74°            | -12.70 T/m           |

(Previous Lattice Design)

- OptiM and Mathematica give identical thick matrix results.
- G4Beamline results are nearly identical to the thick lens matrix analysis.
- Bottom condition chosen initially because of lower quadrupole gradient for same nominal bend angle
  - Same condition chosen studied by Derbenev.

![](_page_6_Picture_0.jpeg)

### September Lattice

![](_page_6_Figure_3.jpeg)

 $\sigma_x = \sigma_y = 6 \text{ mm}$  $\theta_x = \theta_y = 200 \text{ mrad}$ 

 $\beta_{\text{Beam}} = \sigma / \theta = 30 \text{ mm}$  $\varepsilon_{\rm rms} = \sigma \theta = 1.2 \, \rm mm$ 

Muon Collider Design Workshop -- BNL

![](_page_7_Picture_0.jpeg)

Innovation in Research

![](_page_7_Figure_2.jpeg)

for 
$$M = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
  
 $f_1 = f_2 = f$   
 $B = 2f$   
 $A + C = B = 2f$ 

$$A = C \Longrightarrow f = A = \frac{1}{2}B$$

Muon Collider Design Workshop -- BNL

![](_page_8_Figure_0.jpeg)

- Fewer dipole/quads:
  - Reduced (spherical-like) aberrations
  - Reduced base cell from 1.6 m to 0.7 m
- Absorbers every alternate cell (υ<sub>x</sub>=2π, υ<sub>y</sub>=π)
- From matrix analysis  $\rho = -0.175$

![](_page_9_Picture_0.jpeg)

![](_page_9_Figure_1.jpeg)

0

0

Ax\_tot

6 December 2007

Ax\_disp

Ay\_disp

Ay\_tot

![](_page_9_Figure_2.jpeg)

1.4

#### Muons, Inc. Separated Function Design

Innovation in Research

![](_page_10_Figure_2.jpeg)

# Muons, Inc. Separated Function Design Has Issues

Innovation in Research

![](_page_11_Figure_2.jpeg)

![](_page_12_Picture_0.jpeg)

### **PIC Lattice Mark-IV**

![](_page_12_Picture_3.jpeg)

![](_page_13_Picture_0.jpeg)

### Equalize X-Y Growth

![](_page_13_Figure_2.jpeg)

![](_page_14_Picture_0.jpeg)

### **Phase Space**

#### No Perturbation

![](_page_14_Figure_3.jpeg)

#### Acceptance limited by physical apertures

![](_page_15_Picture_0.jpeg)

### Add Perturbation

#### No Absorber

 $\alpha$  = +10%

![](_page_15_Figure_4.jpeg)

![](_page_15_Figure_5.jpeg)

## Muons, PIC Cooled Phase Space

Innovation in Research

![](_page_16_Figure_2.jpeg)

6 December 2007

Muon Collider Design Workshop -- BNL

![](_page_17_Picture_0.jpeg)

### Emittance

![](_page_17_Figure_3.jpeg)

![](_page_18_Picture_0.jpeg)

### **Dispersion Matching**

![](_page_18_Figure_3.jpeg)

![](_page_19_Picture_0.jpeg)

### Longitudinal Issues

![](_page_19_Figure_3.jpeg)

![](_page_20_Picture_0.jpeg)

### **Perturbation Effect**

 $\alpha$  = +5%

![](_page_20_Figure_3.jpeg)

![](_page_20_Figure_4.jpeg)

![](_page_21_Picture_0.jpeg)

### **Chromatic Correction**

Innovation in Research

![](_page_21_Figure_3.jpeg)

- Standard method uses sextupole families spaced by  $\pi$  phase advance.
  - This method drives the <sup>1</sup>/<sub>2</sub> integer resonance unless balanced
  - Requires minimum  $2\pi$  phase advance in both planes for implementation (4 cells = 2.8 m)

![](_page_22_Picture_0.jpeg)

### Conclusions

- Symmetric perturbation issue is solved by using different horizontal & vertical phase advances.
- Lattice design shows transverse cooling within aberration controlled region for monochromatic beam.
  - RF recovery not physically realistic
- Transverse acceptance is an issue due to large angular spread
  - Angle spread is fixed by the multiple scattering in the absorber.
  - Reducing lattice length would help
  - Baseline study using possibly unphysically large apertures will identify design parameters to optimize
- Next-order transverse aberration control theory in place, but needs to be implemented.
- Study longitudinal effects in terms of "flat" chromatic tune region with perturbation.
- Fundamental chromatic aberration control not effectively implemented.
- Isochronous lattice for initial PIC cooling without energy recovery needs to be designed.