Muon Colliders
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e Driver April 2009
e Target & capture ENAL
e Acceleration
e Collider ring ~ ***
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e Matching between 50T solenoid cooling

o rf breakdown problem for 6D cooling

— Magnetic insulation = ***

— High pressure gas ***

— Cold cavities ***

e Conclusion

*** New results since last year



Collider Parameters

C of m Energy 1.5 4 TeV
Luminosity 1 4 |10%* cm®sec!
Muons/bunch 2 2 1012
Ring circumference 3 8.1 km
Beta at IP = 0., 10 3 mm
rms momentum spread 0.1 | 0.12 %
Required depth for v rad| 13 135 m
Repetition Rate 12 6 Hz
Proton Driver power ~4 |~ 1.8 MW
Muon Trans Emittance 25 25 pi mm mrad
Muon Long Emittance |72,000 72,000 | pi mm mrad

e Emittance and bunch intensity requirement same for both examples

e Luminosities are comparable to CLIC's

e Depth for v radiation keeps off site dose < 1 mrem /year
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Proton driver
e Project X (8 GeV H™ linac),

— Accumulation in the Re-cycler
— Acceleration to 56 GeV in the Main Injector

— Stack and re-bunch in new ring
—17x7=12Hz x40 Tp =4 MW

e Alternatives

— Doing it all at 8 GeV
— Sequence of synchrotrons

Target & Capture

e Mercury Jet Target

e 20 T capture

e Adiabatic taperto 2 T

e MERIT Experiment at CERN H. Kirk (BNL) &K. McDonald

— Up to 30 Tp (cf 40 Tp for 56 GeV =~ 300 Tp for 8 GeV)
— No problems seen



Phase Rotation

e Neuffer method: ﬂ % f[:’o
| @ o
— Bunch first Drift Buncher —%5— OOO Rotation - (J () 0 0 0000
— then Rotate b % Oog
© dt

e Frequencies of bunching and rotation must change as function of drift

e Current simulation used rf in magnetic fields ***

Acceleration

e Sufficiently rapid acceleration is straightforward in Linacs

and Recirculating linear accelerators (RLAs)
Using ILC-like 1.3 GHz rf

e Lower cost solution would use Pulsed Synchrotrons

— Pulsed synchrotron 30 to 400 GeV (in Tevatron tunnel)
— SC & pulsed magnet synchrotron 400-900 GeV (in Tevatron tunnel)
— SC & pulsed magnet synchrotron 900-2000 GeV  (in new tunnel)



Collider Rings
e 1.5 TeV (c of m) Design

— Now meets 5" and acceptance requirements

— But early dipole may deflect unacceptable background into detector

e 4 TeV (c of m) 1996 design by Oide

— Meets requirements in ideal simulation

— But is too sensitive to errors to be realistic

Collider Ring Dipole Magnets

e Luminosity o< 1/circumference x< B >
So very high field dipoles desirable iy e

Horlzontal out SS (cold)

Lorentz Forces:
Vertical: up (small) |
Horlzontal out
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- :

e 1/3 of beam energy given to decay electrons =
e 15 T HTS Open Mid-plane dipole good option =~ il
Eu

Means to absorb their energy required




Detector  From 1996 Study of 4 TeV Collider
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e Sophisticated shielding designed in 1996 4 TeV Study

e GEANT simulations then indicated < 10** LHC backgrounds
BUT

e Tungsten shielding takes up 20 degree cone
e Can we do better? (New effort being organized)



Muon Cooling
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Muon Cooling
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Final Cooling in 50 T Solenoids

|COOL simulation, including matching, of last two solenoids

[ 50 T solenoids
50 I Transport solenoids i
25 _ Induction Acc -
| [ I | m@ ]T |
) ? T . | |
0 10 20 30
length  (m)

e 50 T design from PBL SBIR phase 1
e 1.4 MV/m Induction



ICOOL Simulation
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Emittances

25
20

15

10 ’
5

€, (mm mrad) € (mm)

10

e Little loss in matching

e Transmission 85%
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Is 50 T Realistic ?

e 45 T hybrid at NHMFL, but uses 25W

— We need =~ 5 solenoids
— 125 MW not crazy

e Conservative (PBL SBIR) hybrid approach

— Replace outer (17 T) resistive coil with Nb3Sn
— Replace next (33T) resistive coil with HTS

— Power now 10 MW per 50T

— 5 coils use acceptable 50 MW

e 50 T all HTS solenoid preferable

— but not essential

o If less field used £ x 1/e; x B
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PBL 50 T hybrid
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Experimental results on breakdown in fields
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Some problems in this data
Conclusions are preliminary
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Experimental results on breakdown in fields
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2) Magnetic Insulation Concept

o [f magnetic field lines are parallel to an emitting surface

e All field emitted electrons will return to the surface with low energies and do
no damage

A first experiment (Under construction at FNAL)

Bx
Solenmd Pill- box Cavity

[ / |

Electrons i_i
W/ Ez | ‘

Simulation Experiment in 4 T solenoid
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Magnetically Insulated Pre-Cooling Lattice
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e Good solution for Pre-Cooling

e Difficult engineering
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RFOFO 6D Guggenheim Cooling
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e Because used for so much
cooling losses are unaccept-
able (3% vs 7% transmission)

e Surface fields now ~ 2 times
acceleration

e Shunt impedance worse



3) High pressure gas filled rf (Mucool & Muons Inc)
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Pressure (psia) at T=293K

e High pressure hydrogen gas suppresses breakdown
e and can be used as primary absorber
e Lattices must have low (3, everywhere

e Emittance exchange using LiH wedges
Or systems with longer paths for higher momenta (e.g. HCC)
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Helical Cooling Channel (HCC)
(NFMCC, MCTF, & Muons Inc)

e Muons move in helical paths in high pressure hydrogen gas

e Higher momentum tracks have longer trajectories giving momentum cooling
(emittance exchange)

e Required
Fields 50-
100% higher
than in
Guggenheim

e But transmis-
sion better

e Engineering integration of rf difficult
but possible with lower average gradient

e Possible problem of rf breakdown with intense muon beam transit
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ICOOL Simulation of HCC for 201 MHz Cooling
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e Transmission is better than Mag Insulation
e But not as good as old Guggenheim

e Engineering, safety and effects of beam to be resolved
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4) Beryllium/Aluminum Cold Cavities

Electron beamlet Thermal diffusion

Thermal diffusion

"\ Skin depth

C
C

Our SLAC
Mag Field Problem Ohmic heating problem

e SLAC observes copper surface damage with cyclical surface heating of only
45 degrees

e Focused field emission currents could also heat copper to such temperatures

e Breakdown will follow if the damage is on a high gradient surface
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Assume damage is from cyclical strains S due to Beamlets

dE t [<5) Oz(T) Thermal diffusion

S x — d Electron beamlet

dx 0 Abeam P Cp<T)

a(T") expansion, p density, C,(T") specific heat. |

1

Assume r < d(T) < dx
e.g. 805 MHz, B =3T, £ =17 (MV/m)
dr = 100(um), d = 48(um), r = 10(um)

displacement

d(T) K(T) Thermal with phase
T diffusion dx
Apeam ~ 2d(T) d — d(T) =
o=
<
dE (' I(§) B a(T) .
S x — dt - A= 2ddx
dzJ, d(T) p Cy(T) sate charge

e We will assume the rf pulse length ¢ is NOT increased even when low tem-
peratures give longer decay times 7
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e Cold beryllium gives reduction Bgymage > 10
should solve the problem for all cases

e Cold aluminum gives reduction Bgymage = 3
might solve the problem for 805 case

e Test of cooled copper cavity will test the hypothesis
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Conclusion

e All stages for a "baseline” design have been simulated at some level
e 1.5 TeV Collider design now has acceptance for 25 mm mrad emittance

e Example of matching for final 50 T cooling done

e Significant technical problem is rf breakdown in magnetic fields

e But several possible solutions
— ALD or other surface treatment
— Magpnetically insulated cavities

— High pressure hydrogen gas filled cavities

— Cooled Al or Be cavities «— preferred solution
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