

Accelerate muons to ⁷⁵⁰ GeV with one ⁸ GV Linac

•Components:

> Low energy cool muon source. One ⁸ GV Linac. RF is not dispersed around the rings. One Dogbone with ⁸ passes.

Two ¹⁰⁰⁰ ^m radius synchrotrons with rapid cycling magnets. One ¹⁰⁰⁰ ^m radius synchrotron with interleaved dipoles(Fixed superconducting dipoles and rapid cycling dipoles).

• For ^a sketch of acceleration with RF dispersed around rings see: D. J. Summers et al., PAC07, axXiv:0707.0302

Superconducting RF Frequency: 805 MHz or 1300 MHz?

- Red Flag: 2×10^{12} μ extract 8% energy w/1300 MHz cavity. Estimate longitudinal wakefields. Ref: V. Yakolev et al. $k(\vert\vert)= [\bar{N}(\Gamma(1/4)Z_0c)/(\pi^5)]$ $N = 9$ cells/cavity, $a = 35$ mm, $g = 115$ mm $5/$ 2 ${2a)}]\sqrt{g/\sigma}=$ loss factor $\Gamma(1/4) = 3.63, \quad Z_0 = 377 \Omega, \quad \sigma =$ bunch length = 10 mm $k(||) = 5.1 \text{ V/pC/cavity}, \ \ 2 \times 10^{12} \mu = 320 \text{ nC}$ $k(||) = 1.6$ MV/cavity and a cavity is a meter long... This can make the bunch length increase.
- What klystrons are available at ⁸⁰⁵ MHz? Ask S. Henderson. SNS uses ⁷⁵⁰ kW, 8% duty cycle costing \$170k each 13% more per MW than ¹⁰ MW, ¹³⁰⁰ MHz ILC klystrons. But SNS allows 8% duty factor and ILC only has 2%!
- Work out power needed to run an ⁸ GV Linac. Consider $2\!\times\!10^{12}\mu^+$ and $2\!\times\!10^{12}\mu^-$ in a $1000\,\mathrm{m}$ radius ring. ³²⁰ ⁷⁵⁰ kW klystrons will keep up. Cost: \$54M for klystrons.
- Do ⁸ dogbone passes in the ⁸⁰⁵ MHz, 8GV Linac. Get up to ⁶⁰ GeV with very high muon survival. Count on stored cavity energy for these ⁸ passes.

⁶⁰ to ⁴⁰⁰ GeV, ²⁶⁰ Hz Synchrotron

- \bullet 60 \rightarrow 400 GeV in 43 orbits (0.9 ms)
8 GV Superconducting RF (805 MH) ⁸ GV Superconducting RF (805 MHz)Muon Survival $= 79\%$ Radius $= 1000$ m
- Duplicate the Fermilab Main Ring FODO Lattice
- 1.7m, 30T/m Quadrupoles, $f = 260$ Hz
- 6.3m, 1.8T Dipoles (8/60.9m cell), $f = 260$ Hz Muon transverse emittance $=25\,\,\mu$ m, $\,\,\gamma(60\,\text{GeV})=570$ $h = 6\sigma = 6 \sqrt{25 \mu m \ 99 m/(6 \pi \beta \gamma)} = 4 m m$ n is small thut need OPTIM to get re Beam is small, but need OPTIM to get real magnet gaps. 6×30 mm bore, N=4; $\;I=B\,h/\mu$ ${\mathsf W} \!=\!\{\frac{B^2}{2\mu_0}d\tau = .5\,LI^2 = .5\,CV^2, f\}$ $_0N=2200$ A .28mm grain oriented 3% Silicon steel laminations2 $\overline{2\mu_0}$ $d\tau=.5\,LI^2$ $e^2 = .5 CV^2, f =1/2\pi\sqrt{LC}$; V = 2200V $\textsf{Core Loss} \left(\textsf{B@1.6T}\right)\!=\!4.38\!\times\!10^{-4}f^{1.67}B^{1.87}\!=\!11^{\,\prime}$ 550 Tons @ 13Hz Duty Cycle \rightarrow 260kW/ring $^4f^{1.67}$ $^7B^{1.87}\!=\!11\,\mathsf{W/kg}$

⁴⁰⁰ to ⁷⁵⁰ GeV, ⁵⁵⁰ Hz Hybrid Synchrotron

- 400 \rightarrow 750 GeV in 44 orbits (0.92 ms) Radius = 1000m
8 GV. 805 MHz Superconducting RF: Muon Survival = 92 $8\,\mathrm{GV}$, $805\,\mathrm{MHz}$ Superconducting RF; Muon Survival $=92\%$
- Approximate the Fermilab Main Ring FODO Lattice
- 3.2m, 30T/m Quadrupoles, $f = 150$ Hz
- 4.2m, 8T Fixed Superconducting Dipoles
- 3.75/7.5/3.75m, -1.8 \rightarrow +1.8T Dipoles, $f = 550$ Hz
5mm×50mm×8.2m bore. N=2: $I = B h / \mu_0 N =$ 5 mm \times 50mm \times 8.2m bore, N=2; $I=B\,h/\mu$ $\mathsf{W}\!=\!\int_{\frac{B^{2}}{2\mu_{0}}}^{B^{2}}\!d\tau=$.5 $LI^{2} =$.5 $CV^{2}, f =1/2\pi\sqrt{I}$ $\frac{1}{10}N = 3600$ A $\textsf{Core Loss} \left(\textsf{B@1.6T}\right)\!=\! 4.38\!\times\!10^{-4}f^{1.67}B$ 2 $\overline{2\mu_0}$ $d\tau=.5\,LI^2$ $^2 =$.5 $CV^2, f = 1/2\pi\sqrt{LC}; \ \mathsf{V} =$ 4700V uty C yclo \rightarrow 12001 $^4f^{1.67}$ $^{7}B^{1.87}\!=\!40\,\mathrm{W/kg}$ 780 Tons @ 13Hz Duty Cycle → 1200kW/ring
- ————————————————————

- •Dipoles oppose, then act in unison
- 1/40000 Path Length Difference during an acceleration cycleAdjust radius; $1000 \rightarrow 1000.025$ m

Particle Paths in ^a ⁴⁰⁰ to ⁷⁵⁰ GeV Hybrid Half Cell

Grain Oriented 3% Silicon Steel ${\it EI}$ Transformer Laminations

Table 1: Resistivity (ρ) , coercivity (H $_{\rm c}$), and permeability (μ) of steels. Higher resistivity lowers eddy current losses. Low coercivity minimizes hysteresis losses. Grain oriented 3% silicon steel has ^a far higher permeabilityparallel $(\|)$ to than perpendicular (\bot) to its rolling direction and permits minimal energy $(B^2/2\mu)$ storage, as compared to low carbon steel at $1.8\,\mathsf{T}$ $^{2}/2\mu)$ storage, as compared to low carbon steel at $1.8\,\mathsf{T}.$

Main Ring Lattice at 30 GeV

Prototype ⁵⁵⁰ Hz, 1.8T, ³⁰ cm Long Dipole Magnet

- 3% grain oriented steel laminations Vendor: ^T ^C Metal Slitting & Shearing, Los Angeles, CACut laminations with Sodick AQ325L Wire EDM
- Stainless steel cooling tubes for water and thin copper wire. Epoxy impregnate the coils. Conductor in use at ISIS. Made by Trench Ltd.
- LC circuit. Polypropylene capacitor bank. IGBT switch. Fluke 415B High Voltage Supply for topping off capacitors. 5 mm \times 50mm \times 0.3m bore, N=10; $\;I=B\,h/\mu$ $\mathsf{W}\!=\!\int_{\frac{B^2}{2\mu_0}}^{B^2}d\tau= .5\,LI^2= .5\,CV^2, f=1/2\pi\sqrt{L^2}$ $\frac{1}{C}$. $N = 720$ A 2 $\overline{2\mu_0}$ $d\tau=.5\,LI^2$ $^2 = .5\,CV^2, f = 1/2\pi\sqrt{LC}$; V = 860V
- F. W. Bell ⁴⁰⁴⁸ Hall Probe to measure 1.8T. Good to 2% at up to ³⁰⁰⁰ Hz.

• Have applied for QuarkNet funds to build in July 2009.

Summary

- High injection γ due to low muon mass plus cool muons \rightarrow small magnets ramping with a few thousand volts.
Power supplies are similar to those for neutrino horns. Power supplies are similar to those for neutrino horns. Capacitors: \$5/joule. Choke: \$3/joule. Switch: \$1000/MWMany thanks to Dan Wolff and Ken Bourkland for advice.
- Ameliorate eddy current and hysteresis losses in magnets. Thin grain oriented silicon steel laminations. Stainless steel cooling tubes for water and thin copper wire. For loss calculations see: D. J. Summers, physics/0108001Conductor in use for new ISIS choke. Made by Trench Ltd.
- Exploit the 4% duty cycle. 25x lower losses than continuous operation. 96% of the time energy just sits in the capacitor banks.
- Muon survival is reasonable in ^a fast cycling synchrotron.
- Goal: 1.5 TeV collider with one 8GV, ⁸⁰⁵ MHz Linac.

Fast Cycling Acceleration: R&D Plan

- Study ring lattices and apertures
	- Smaller apertures: lower ramping voltages
- Build short prototype fast ramping dipole and power supply
- Build full length prototype fast ramping dipole and power supply