Report from Japan

Yoshitaka Kuno Department of Physics, Osaka University

The MUTAC review, LBNL April 8-10, 2008

Outline

- International Collaboration
 - MUCOOL in NFMCC
 - MICE
- •(Scaling) FFAG Studies in Japan
 - ERIT FFAG for neutron sources at KURRI, Kyoto University
 - PRISM FFAG for muon phase rotation at Osaka University
- Summary

International Collaboration

• NFMCC

- The Japanese group has joined the MUCOOL studies since 2000.
- Major contributions are the development of liquid hydrogen absorbers of convection type.

• MICE

- The Japanese group has joined the MICE collaboration from the beginning.
- ISS/IDS Studies

MUCOOL

- The Japanese group has participated in NFMCC since 2000. using the US-Japan Collaboration Program.
 - Major area of our contribution is the construction of liquid hydrogen (LH2) absorber for MUCOOL
- Convection type absorber
 - He gas exchanger removes heats from the absorber wall.
 - Advantages:
 - simple, less LH2
 - Disadvantages:
 - less cooling power (need prototype.
 - MICE uses convection type.

Cooling Test at MTA@FNAL

KEK LH2 absorber test - Evolution of LH2 temperature gradient versus applied power (with +/- 5% error) 2.8 2.6 2.4 2.2 2.0 1.8 (¥) 1.6 Delta⊥ 1.4 1.2 19.5 18.4 16.3 1.0 18.0 16.4 0.8 18.8 15.4 0.6 15.1 0.4 線形 (16.3) 0.2 0.0 0.0 5.0 10.0 25.0 15.0 20.0 Power applied to the LH2 absorber (W)

Temperature rise of 2.4 K for 20 W, and LH2 has 9 K range. Temperature gradient (TC-106-H - TC-110-H) versus applied heat for several LH2 absorber bath temperatures.

dT=2.3 K for 20 W \rightarrow dT=9 K for 78 W (T_{max}=23K, T_{min}=14K)

Heat road up to 70 kW can be taken by convection cooling.

US-Japan Program

- We obtained the budget from the US-Japan program (between DOE and MEXT in Japan, and funded by MEXT) since JFY 2000.
- Our proposal for JFY 2008 is also turned down.
 - Since JFY 2007, the total budget of the US-Japan became half and the competition became harder.
- Need to looking for other budgets ?

MICE

Japanese Contributions

MICE Test LH2 Absorber at KEK

H2 gas tank (2000 l)

Bendix 18 pin connector x2

(Scaling) FFAG R&D

FFAG-based Scheme

- Japanese scheme of a neutrino factory is based on scaling FFAGs.
 - proposed in 2000.
 - a study report in 2001.
- series of FFAG rings
 - 0.3-1/1-3/3-10/10-20 GeV/c
- Advantages
 - large acceptance
 - quick acceleration
 - cooling is not a must (but better if cooling is available.

Types of FFAG

- Scaling type FFAG
 - betatron tune : constant (zero chromaticity)
 - non-linear field elements

- Non-scaling type FFAG
 - betatron tune : not constant
 - linear field elements

Scaling FFAG R&D in Japan

- Past
 - KEK
 - 500 keV Proof-of-Principle (POP) machine (2000)
 - •150 MeV proton FFAG (2006)
- Present
 - KURRI, Kyoto University
 - Accelerator Driven System (ADS) (2007)
 - 3 FFAG rings + reactor
 - FFAG for neutron sources (ABNS) (2008)
 - ERIT (emittance/energy recovery internal target)
 storage ring + internal target
 - Osaka University
 - PRISM FFAG for muon storage ring (2008)

FFAGs at KURRI, Kyoto University

Status of ADS FFAG

- Injector Ring (Spiralinduction FFAG)
 - completed in Jan., 2006.
 - E=1.2 MeV, I=50 nA

- Booster Ring
 - completed June, 2006.
 - E=11.5 MeV, I=0.8 nA
- Main Ring
 - under commissioning

Neutron Sources with Internal Target : FFAG-ERIT at KURRI, Kyoto University

- ERIT = Emittance / Energy Recovery Internal Target
- neutron source from internal target in the proton FFAG
- internal target (Be foil) and RF

PRISM-FFAG for Muons

COMET/PRISM Projects in Japan

- •without a muon storage ring.
- with a slowly-extracted pulsed proton beam.
- doable at the J-PARC NP Hall.
- regarded as the first phase / MECO type
- Early realization

$B(\mu^{-} + Ti \to e^{-} + Ti) < 10^{-18}$

- •with a muon storage ring.
- •with a fast-extracted pulsed proton beam.
- •need a new beam line and experimental hall.
- •regarded as the second phase.
- •Ultimate search

PRISM FFAG Ring

- use a FFAG ring to store muons.
 - phase rotation to make narrow energy spread
 - eliminate pions.
- being constructed at Osaka University for 2003-2007.
- a scaling FFAG
 - large acceptance

Phase Rotated Intense Slow Muon source

PRISM FFAG ring construction has been started in 2003.

PRISM FFAG Magnets

- radial sector with C-type yoke
 - D-F-D triplet
- machined pole shape to create field gradient (k)
- trim coils for variable k values (future)
- vertical tune : F/D
- horizontal tune : k value
- magnetic field design : TOSCA

Alpha Particle Tracking with One Magnet Cell

Transfer Map with Truncated Taylor Expansion

transfer map and Zgoubi agree one another.

truncated Taylor expansion of higher orders to include non-linearity

$$A_{a}(1) = \sum_{b} R_{ab}X_{b}(0) + \sum_{b,c} T_{abc}X_{b}(0)X_{c}(0) + \sum_{b,c,d} U_{abcd}X_{b}(0)X_{c}(0)X_{d}(0) + \cdots,$$

- advantages of this method
 - 3D magnetic field measurement is not needed.
 - Only one magnet would give the performance of the ring.

6 Sector PRISM-FFAG

Demo. of Phase Rotation with α -particles

- 6-sector FFAG ring
 - PRISM-FFAG Magnet x 6、 RF x 1
- Beam : α-particles from radioactive isotopes
 - ²⁴¹Am 5.48MeV(200MeV/c)
 - \rightarrow degrade to 85MeV/c
 - small emittance by collimators
 - pulsing by electrostatic kickers
- Detector :
 - Scintillator
 - position
 - Solid state detector
 - energy (50 kV resolution)
 - timing (50 nsec)

Phase(ns)

6-sector PRISM FFAG Ring at the M-Exp Hall, RCNP, Osaka University.

PRISM

RF for 6-sector PRISM FFAG

RF system for 6 sector PRISM-FFAG has been developed. 100kV/m @ 2MHz is promising.

Alpha Particle Injector and Detector

Alpha particle injector

Alpha particle detectors

Plastic scintillator with ZnS with bothend readout for position measurement

In addition, a SSD detector for energy measurement

The First Alpha Events in the 6-Cell PRISM-FFAG Ring.

The first alpha events were detected on the 28 March, 2008.

PRISM FFAG Test at RCNP, Osaka University

despite limited resources.

End of My Talk.