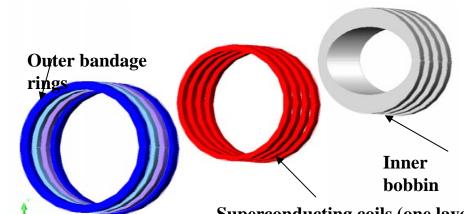


MCTF Magnet and HTS Conductor R&D

- Magnet R&D (with Muons Inc.)
 - Conceptual design studies of Helical Cooling Channel Magnet System
 - Development of Helical Solenoid for Cooling Demonstration Experiment (CDE)
 - Very High Field Solenoid R&D
- R&D for SC Materials in support of magnet program (with National Labs and Industry)
 – Participation in National HTS Program
- Contribute where possible to the conceptual design of detector magnets

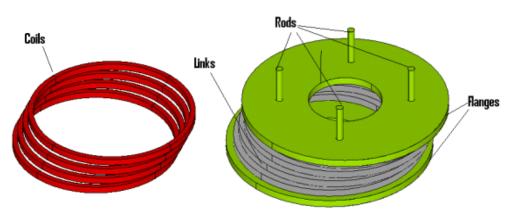
Parameter			Segment			
		1 st 2 nd		3 rd	4 th	
L	Length	m	50	40	30	40
λ	Helix period	m	1.0	0.8	0.6	0.4
a	Ref. orbit radius	m	0.16	0.13	0.095	0.064
κ	Helix pitch		1.0	1.0	1.0	1.0
Bs	Solenoid field	Т	-6.95	-8.68	-11.6	-17.4
bd	Helix dipole	Т	1.81	2.27	3.02	4.53
bq	Helix quad	T/m	-0.35	-0.44	-0.59	-0.88
			Vie:0818.7			
1912 1960 99	Y		10+-000.047 10+-0000.000 10-0000.000 10-0000.00		1	
1912 1900 19	Y		= 10000 en			
			1.00003-001			
9			- 1 2000 eP			
			= 1900 40 - 1900 40 - 1900 40 - 1900 40			

- The helical solenoid concept (Fermilab)
 - Alternative to straight solenoid with helical D and Q coils
 - Ring coils follow the helical beam orbit produsing solenoidal, helical D and Q fields
- Multi stage HCC study
 - -Wide range of fields, helical periods, apertures
 - Straight solenoid concept does not work for highfield/small-aperture sections
 - -Field tuning more complicate at high fields
 - -NbTi, Nb3Sn/Nb3Al and probably HTS in final stage
- Studies will continue

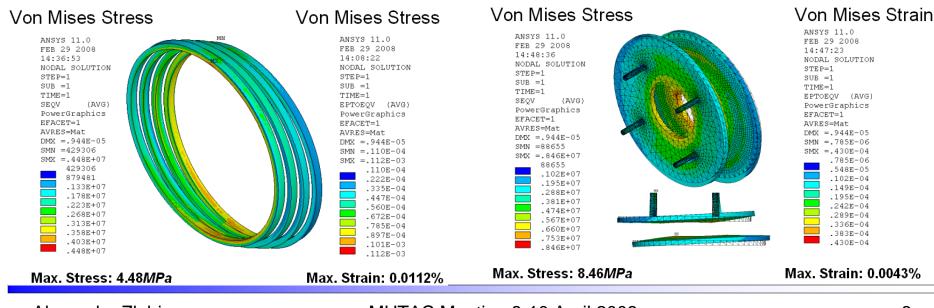

HS for Cooling Demonstration Experiment

Goals: cooling demonstration, HS technology development Features: SSC NbTi cable, B_{max}~6 T, coil ID ~0.5m, length ~10m => Complex magnet, significant magnetic forces and stored energy, must eventually incorporates RE Status: conceptual design complete 5.00000E+000 solenoid matching sections 4.000000E+00 <u>Next</u>: engineering design 3.000000E+00 mechanical structure - 2.000000E+000 field quality, tolerances cryostat 1.000000E+000 quench protection 691337E-001

4-coil Helical Demonstration Model


- Goals:
 - validate mechanical structure and fabrication methods
 - study quench performance and margins, field quality, quench protection
- Features:
 - use existing SSC cable
 - fields and forces as in the HS for CDE
- Funded by MCTF and Muons Inc.

Superconducting coils (one layer, hard bend wound)


Parameter	Model Nominal	Model Max	MANX	
Peak superconductor field	3.3 T	4.84 T	5.7 T	
Current	9.6 kA	14 kA	9.6 kA	
Number of turns/section	10	10	10	
Coil inner diameter	420 mm	420 mm	510 mm	
Lorentz force/section, Fx	70 kN	149 kN	160 kN	
Lorentz force/section, Fy	12 kN	25 kN	60 kN	
Lorentz force/section, Fxy	71 kN	151 kN	171 kN	
Lorentz force/section, Fz	157 kN	337 kN	299 kN	

4-coil model Analysis

Magnetic and mechanical engineering design complete:

- 3D field distribution
- 3D stress/strain analysis in coils and mechanical structure

Alexander Zlobin

MCTF

MUTAC Meeting 8-10 April 2008

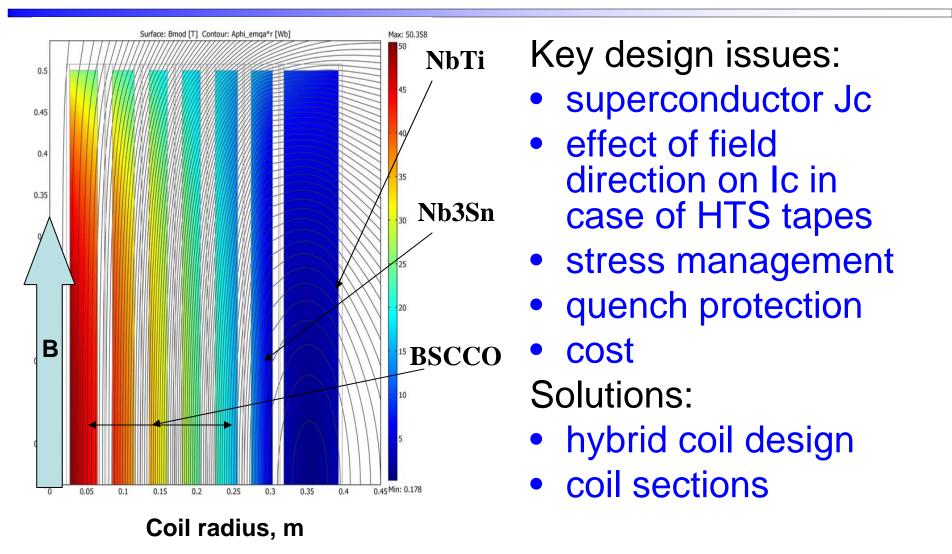
Parts:

- design complete
- procurement in progress
 Cable:
- Extracted strand samples were tested

Practice winding complete:

- cable stability and support during hard bend winding
- coil size control
- Instrumentation:
- development started Model test:
- September 2008

MCTF

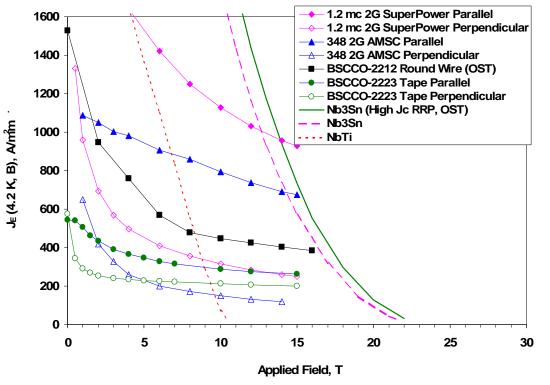

- Directions of magnet R&D program are dictated by muon collaboration and MCTF goals
- Possible directions:
 - Design and build 1/4 period section of NbTi HCC incorporating RF
 - Solve RF/magnet integration issues, cryostat design, etc.
 - Design and build multi-period helical solenoid for 6-D Cooling Demonstration Experiment
 - Validate tracking
 - Better understand and optimize matching sections
 - Design magnet integrated with experiment

- Used in the final muon cooling stage
- Basic Parameters
 - Inner bore diameter 50 mm
 - Length 1 meter
 - − Fields 30 T or higher →
 - HTS materials
- Required R&D
 - Design Studies
 - Identify key issues
 - Determine R&D directions
 - Advances in Conductor R&D

50 T Solenoid Conceptual Design Study

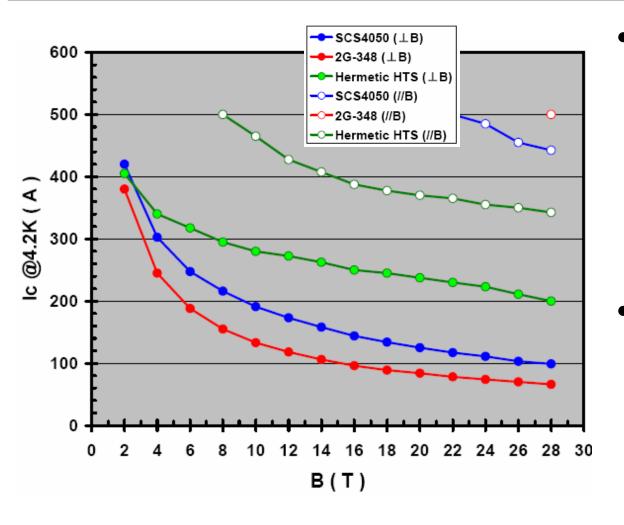
- Build and test smaller HTS and HTS/Nb3Sn hybrid solenoid models
 - Field range: up to 20-25 T
 - HTS material: BSCCO (G1) or YBCO (G2)
 - Conductor type: round strands, cables or tapes
 - Technologies: React-&-wind or wind-&-react
- Motivate progress in HTS conductor technology
 - National Conductor Program (see Alvin's talk)

- Emphasis on HTS strands, tapes and cables
 - Nb3Sn and Nb3AI strand and cable R&D is supported by other programs (DOE, LARP, NIMS/FNAL/KEK, CARE, etc.)
- Collaborator as part of National HTS Program
- R&D infrastructure
 - Two Oxford Instrument Teslatron stations with 16T and 17T solenoids, and test temperatures from 1.9K to 70K
 - 42-strand cabling machine
 - Probes to measure
 - Ic of HTS strands and tapes as a function of field, temperature, and field orientation
 - transverse pressure sensitivity of strand Ic in a cable
 - 28 kA SC transformer to test cables at self-field in LHe


Strand and Tape Samples

Superconductor	Conductor Type	Company	
BSCCO-2212	Round strand	Oxford SC Technologies	
BSCCO-2223	Hermetic tape	American Superconductor	
YBCO-123 SCS4050 tape		Super Power	< 0.145 mn 50 gm Gu 20 gm Cu 50 gm Hastelley cub state 20 gm Cu 50 gm Hastelley cub state
YBCO-123	YBCO-123 2G-348 tape Su		Fergendicular cross section of a Stabilizer HTS insert Stabilizer Stabilizer Scholar Scholar HTS insert Stabilizer Scholar Sch

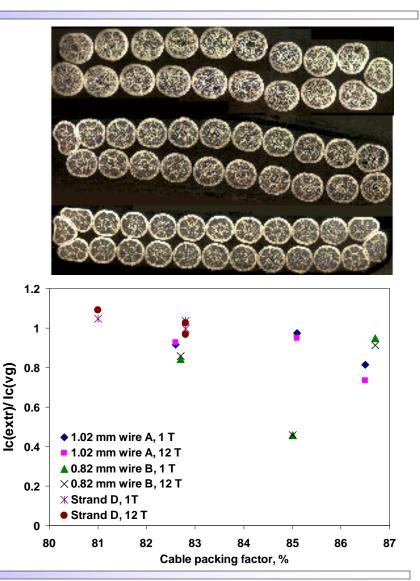
October 30, 2007 Alexander Zlobin


HTS and LTS Performance at 4.2 K

- Measurement on round strands and tapes in magnetic fields up to 17T
 - Ic for tapes depends on field orientation
 - Detailed measurement of Ic angular dependence for HTS tapes at fields up to 15-16 T
 - LTS samples show better performance than HTS at low fields
- Input data for High Field HTS Solenoid design studies

High field HTS tests

- HTS tape Ic measurements at 4.2 K (with NIMS, Japan)
 - transverse fields up to 28T
 - two field orientations
- Input data for High Field HTS Solenoid design studies
 - reduce uncertainty in conductor performance at high fields

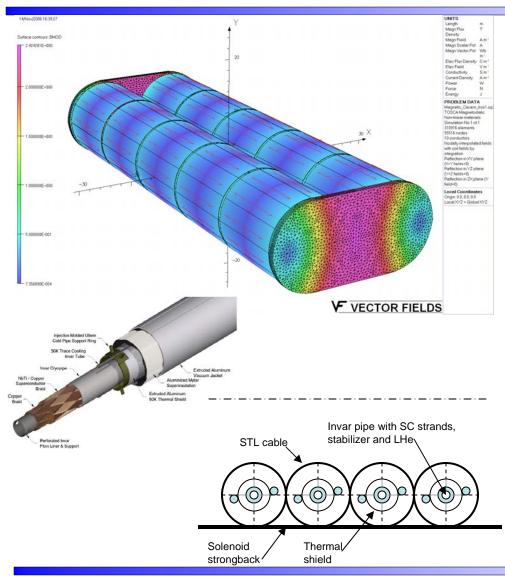

BSCCO Rutherford Cables

Goals:

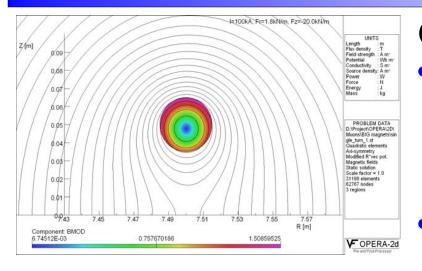
- increase conductor Ic
- reduce magnet inductance
 - Important for magnet quench protection

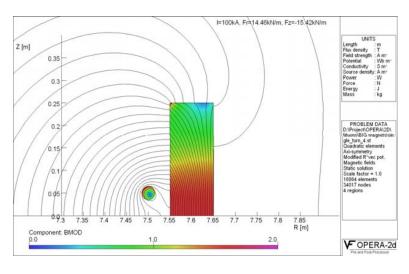
Issues:

- Ic degradation after cabling
 - Determine design criteria and cabling procedures
 - low degradation at packing factors <87%
- Cable HT optimization
 - reduce Ag leaks and Ic degradation
- Transverse pressure sensitivity studies
 - determine pressure limits



- HTS reaction site for strands and small coils
 - Convert existing small oven
 - Go through a safety review
- Collaborate with DOE labs, industries and Universities through National HTS Conductor program
 - Round Robin test of HTS round wire
 - Collaboration with NHFML on short sample and coil reaction cycle
 - Start small coil test program to study technology and quench issues
 - Support SBIR on HTS development


NF Detector R&D: Magnetic Cavern



- Cable based design (Fermilab)
- Features
 - 10 solenoids
 - 15-m long 15 m ID each
 - Bnom~0.5 T (50% margin)
 - -1 m iron wall, B~2.4 T
 - Good field uniformity
- Solve technical problems
- Reduce detector cost

2-turn Solenoid Model (proposal)

Goals:

- Optimize cable design, thermal shield and support structure
 - Needs modification to provide long piece length (~5-7 km) and flexibility (bending diameter 15m)
- Fabricate and test ~100-m long cable prototype
- Test solenoid support structure and assembly procedure
- Test cable support structure (axial and radial mechanics)
- Measure heat leaks to LN and LHe

Unique opportunity to model a short section of the detector before fabrication.

Summary

- Magnets are one of the enabling technologies for the Muon Collider/Neutrino Factory
- The development of practical muon collider magnets is a long term investment
- MCTF Magnet program has already created a strong foundation and has made progress in all key directions
- Important on going and near term activities
 - Support the National HTS R&D program
 - Design and possibly build relevant demonstration magnets
 - NbTi Helical Solenoids without and with RF
 - Moderate field solenoids and very high field solenoids in support of Muon Cooling Experiments
 - Continue the conceptual design studies of collider ring, IR and detector magnets
- It is critical for the community to increase the support of advanced magnet and HTS R&D
 - i.e. stable funding and manpower resources