

MuCool Program Overview

Muon Cooling R&D Alan Bross

Alan Bross

MUTAC

- MuCool Overview
 - Collaboration
 - MuCool Test Area
 - Program Synopsis
 - MuCool Phase II

- 201 MHz RF Program
- 805 MHz RF Program
- LiH Absorber Program
- Coupling Coil
- MTA Beam Line (MCTF)

AB

D. Li D. Huang AB M. Green

C. Johnstone

MUTAC

Mission

- Design, prototype and test all cooling channel components
 - 201 MHz RF Cavities, LH₂ absorbers, SC solenoids
- Support MICE (cooling demonstration experiment)
- Perform high beam-power engineering test of cooling section components
- Consists of 10 institutions from the US, UK and Japan

MuCool Test Area

Alan Bross

5

RF Cavity R and D

ANL/FNAL/IIT/LBNL/UMiss

Alan Bross

MUTAC

Fundamental Focus Of RF R&D

MCTF

- Study the limits on Accelerating Gradient in NCRF cavities in magnetic field
- It has been proposed that the behavior of RF systems in general can be accurately described (predicted) by universal curves
 - Electric Tensile Stresses are important in RF Breakdown events

Alan Bross

 This applies to all accelerating structures

Detailed Modeling Code Now Available

MUTAC

Alan Bross

- We have extended this model to SCRF and high frequency problems.
- We are working with the Argonne Materials Science Division to develop:
 - A materials science program to understand chemical, morphology and electronic properties of rf SCRF and NC materials
 - Cavity tests to determine optimum procedures and performance.
- This program is underway and, using Argonne internal funding, and has produced important results:
 - We have developed a model of High Field Q-Slope based on magnetic oxides, that seems to explain SCRF cavity data.
 - We have developed a new procedure to produce niobium surfaces without complex oxides.
 - We are beginning a program of cavity testing with JLab.
- Using Atomic Layer Deposition and other newly developed materials science techniques we can synthesize and analyze surfaces with unprecedented precision.
 - ▲ Limits maximum gradient

MUTAC

- We are extending our experimental program to explore the ultimate gradient limits of "perfect" surfaces, which have the properties that (ATOMIC LAYER DEPOSITION):
 - They are <u>smooth</u> at the nanometer level, so local fields (~1/r) cannot be high enough to produce field emission or breakdown events
 - They are <u>layered</u>, with thin superconducting layers that are expected to be resistant to B field quenches.
 - They are <u>homogeneous</u>, so local "hot spots" should not exist.
 - They can be applied "<u>in-situ</u>" so they are not subject to assembly defects.
 - They allow almost complete freedom to choose <u>substrate</u> for conductivity, rigidity, etc. to avoid thermal, Lorentz and microphonics effects.
- We expect we should be able to address known failure modes and produce structures that reach significantly higher gradients in both normal and superconducting systems.

MUTAC

🗲 Fermilab

The Basic Problem - B Field Effect 805 MHz Studies

MUTAC

Safe Operating Gradient Limit vs Magnetic Field Level at Window for the three different Coil modes 45 (Opposing) 40 4040 Red 37.66 3533.9 35 Gradient in MV/m (Single Coil) 28.5 25.75 • 25.5 30 Black 25 >2X Reduction @ required field 20 16.5 15 15 13.5 (Solenoid) 10 Yellow 5 0 2 3 n Peak Magnetic Field in T at the Window

Alan Bross

Data seem to follow universal curve

 Max stable gradient degrades quickly with B field

Remeasured

April 9, 2008

Same results

805 MHz Imaging

Polaroid Pictures of Field emitters

· Inserting polaroids near the window,

- Gives a picture of how the field emitters change with rf field.
 - 8.8 17.6 MV/m

MUTAC 12

Next 805 MHz study - Buttons

• Button test

- Evaluate various materials and coatings
- Quick Change over

Alan Bross

RF R&D - 201 MHz Cavity Design

The 201 MHz Cavity - 19 MV/m Gradient Achieved (Design - 16MV/m)
In low (few hundred G) B field. Still no breakdown. Limited by available power

MUTAC

201 MHz Cavity Operation in B Field

201 in Position

We have now moved 201 as close as possible to 5T solenoid Can obtain ≈ 1.5T on near window of 201

Alan Bross

MUTAC 16

LiH Absorber R&D

Only 1 vendor was found that would cast LiH

 After some reflection (and some input from Chemists from Argonne Lab), the vendor decided casting LiH was too dangerous (production of H₂ gas)

• Working with Y12 (Oakridge)

- Found the engineer in charge of their LiH work and he suggested that they press (Hot 150C, Isostatic (30,000 psi) a "loaf" and machine parts to our specification from the loaf
 - ▲ They have achieved 98% theoretical density using this technique
 - ▲ They are doing R&D on casting LiH for their internal programs, but do not recommend it for our application.
 - It is very tricky due to the high temperature (700C +) and the large (30%) shrinkage on cooling
- We are in the process of setting up a contract with them to make a disk for temperature studies and 1 or 2 disks for MICE
 - Note: The Li in their LiH is ⁶Li
 - ▲ For the mass we will receive, our parts will be considered Nuclear Material
 - This will require additional proceedures/paperwork for shipment, but Y12 personnel see no inherent problem

MUTAC

MuCool Phase II

Cryo-Infrastructure Installation/Commission Beam Line Installation/Commission

MUTAC

MTA Cryo-Infrastructure

• MTA Reconfiguration

- Commission Cryo-Plant (June 2008)
- Install Transfer Line system
- Raise Equipment to beam height
- New shield wall
- Working on Project Plan
 - $\bullet~\approx$ 3 month effort with adequate technician resources
 - ▲ Need 5 technicians full time (estimate is about 2000 hours)
 - ▲ Plus 5 weeks of a welder
 - ▲ Plus \$50k in M&S (Does not include rerouting of RF power)
- Need to complete before the 2009 (March) Accelerator Shutdown

Existing Dewar-Fed Cryogen System

- All of this is removed
- New (simpler) shield wall
 - Will allow for easier pit access to hall
 - More shielding needed for beam operations in MTA Hall

MUTAC

MTA - Refrigerator Room

Alan Bross

MUTAC 22

Transfer Line System

MUTAC

23

Alan Bross

Transfer Line System

Alan Bross

MUTAC

24

Alan Bross

MUTAC 25

🛟 Fermilab

MTA Beam Line as Installed

MUTAC 26

Alan Bross

April 9, 2008

MCTF

MTA Beam Line Group

First Beam Experiments

- Currently 5T magnet and 201 cavity on floor (below beam ht.)
- We will raise equipment to beam height
 - Also flip orientation of 201 MHz cavity and magnet

• Goal

 First Beam Experiment (Muon's Inc HP RF Test Cell) by end of 2008

MUTAC 28

MTA Beam Commissioning

- Beam Line commissioning to first beam stop (Linac side of shield wall) may start as early as June
- Still doing radiation shielding assessments
 - Rerouting RF Power required
 - Final configuration for this still being developed
- Will start at low intensity
 - Need Shielding upgrade (over-burden) for high-intensity

MUTAC

29

Phase II - Configuration

Alan Bross

MUTAC 30

805 MHz RF studies – Buttons (with and without B field)

- ▲ Materials tests
- ▲ Surface treatment (HP Wash + EP (from UK), ALD (Argonne)
- ▲ E X B study
- 201 MHz RF
 - Continue B field studies
 - Working with Linac Group to improve operational efficiency
- Begin thermal and mechanical tests on HIP LiH absorber prototypes
- Complete MTA cryo infrastructure installation and commission system
- Commission Beam Line
- First tests with Beam Complete by January 09 (MCTF)
 - Test of Muons Inc. HP H₂ RF test cell with beam

